
Spring 2020 End of Semester Report:
Accelerating a Coherent Ising Machine using FPGAs

Aryaa Vivek Pai
McMahon Lab,

School of Applied and Engineering Physics
Cornell University

(Dated: May 14, 2020)

The Coherent Ising Machine simulator developed by Mahon Lab aims to solve discrete optimiza-
tion problems known as Ising problems [1]. This project focused on accelerating the simulation of
the Coherent Ising Machine using a FPGA is a continuation of the project by Darren Schachter in
Fall 2019. The advantages of using an FPGA to accelerate the simulation is its flexibility and capac-
ity to create customized algorithm specific designs. During the previous semester, a stripped-down
version of the simulation program was created in OpenCL. Due to lack of documentation, a decision
was taken to switch to C++ programming. This paper outlines the progress made on during Spring
2020 semester in accelerating the CIM simulator. It explains the various decisions taken to optimize
the program including trade off between sequential and parallel architecture as well as computation
and storage.

I. THE OPENCL MODEL

The OpenCL computation model is a parallel pro-
gramming model used in this project to accelerate the
CIM simulator code on the FPGA. OpenCL programs
are divided into host code and kernel code [2]. The
OpenCL platform model specifies that there is one host
such as a CPU which coordinates the execution of mul-
tiple compute devices such as FPGAs which execute the
kernels. The OpenCL execution model defines the envi-
ronment configuration used by the host and the concur-
rency model used to configure kernels. According to the
concurrency model, a two-dimensional dataset such as
an N by N matrix, is broken in NxN work-items. A cer-
tain number of work-items that computed together are
grouped into workgroups. Thus, taking complete advan-
tage of the parallel architecture. The Kernel program-
ming model how the concurrency is mapped to the hard-
ware, during the build process [3].The Memory model
specifies the use of private memory and shared memory
between the host and devices.

A. Host Code

The Host Code is the program that runs on the
host computer and delegates tasks to various compute
devices, the FPGA instance in our case. The host
code is written is C++ using the OpenCL API. The
main tasks of the host application include setting up
the platform, allocating and transferring buffers to the
device, launching execution of the kernel on FPGA,
reading output buffers from the device memory and
clean up post processing [4].

As a part of the setup, the host code primarily
finds the available computational resources and re-
serves them to complete current workload. A platform
consists of the single host that communicates with

multiple kernels. Once the host connects to the first
discovered platform, it will then connect to a compute
device. In our case this is the FPGA instance known as
CL DEVICE TYPE ACCELERATOR. A context is a grouping
of compute devices and memory objects assigned to
execute kernels and data transfers to them. The host
now defines a context and command queue that holds
the list of specific tasks and memory transfers assigned
to the device in the context. Next, the program to be
executed is created from the source files and complied
using the binary APIs. As per the OpenCL standard,
kernels for FPGA are compiled beforehand, so in this
case the host will use the binary files instead of the
source files.

The host needs to allocate and transfer buffers to
the FPGA device. In the OpenCL memory model,
there are four different disjoint memory spaces for the
kernel and a host memory. The global and constant
memory are shared by both the kernel and the host.
The global memory buffers that transfer data between
the host and kernel are defined in global while read
only variables such as the matrix data size is defined
in constant memory. All arguments used in kernel
functions are declared in private memory. When
arguments such as matrices and vectors which are kept
track with pointers, are declared as pointers in private
space which point to an object in global space [5].
The local memory associated with the device contains
variables used by all work groups [6]. The host first
creates buffers in the host memory, accessible only to
the host, and stores input data for operations in them.
This input data can be read from another file or assigned
with arbitrary values. For the purpose of testing the
matrix vector product program, the matrix and vector
were with values depending on the row and column
of the element. In the actual CIM simulator, values
will be read from a .txt file to avoid building the code
for different matrices. This functionality has already

2

been tested in the code in CIM git hub. The host then
creates the global memory buffers to transfer data with
the kernel and specifies each buffer with size, context
assigned to it as well as access permissions (R/W) for
the kernel. The buffers used for kernel’s input arguments
have read only access while the buffers used to get the
output from the kernel is provided write access. The
host transfers data from the host buffers to the global
buffers, which can be accessed by the devices. Until this
data transfer is complete the host stalls other procedures.

In the next step, the kernel to be executed is

FIG. 1. The OpenCL memory model.

created and the parameters are set to the previously
defined global buffers. As per the OpenCL execution
model, in an NxN computational domain, each inde-
pendent element called a “work-item”. A “work-group”
consists of multiple work items executed in parallel
depending on the number of computational units
available. The dataset is broken in the multiple work
groups. The kernel is executed for each work group so
that all the work items in the dataset are computed. To
execute the kernel, the host schedules the task on the
command queue for the FPGA device. Since a FPGA
does not give the computational units capable of directly
executing kernel code, the user defines the number of
computational units used for the kernel execution. These
design decisions that can optimize the computation time
still need to explored. During execution, the kernel will
write to the output buffer in the global memory space.
Once the kernel has been executed, the host needs to
explicitly initiate transfer from the global memory to the
host memory. The task to read from the global buffer
to the host memory is placed on the FPGA’s command
queue. Like before, during this data transfer all other
processes are halted by the host to preserve memory
consistency. The same process is repeated for executed
of other kernels. The data received is transferred to a

text file for testing and debugging. At the end of the
host code, all the resources are released.

B. Kernel Code

Kernel code is the compute intensive part of the whole
program which mean to be accelerated on the FPGA in-
stance. Kernel is the program that runs on the compute
device. Decisions regarding the micro-architecture of the
FPGA and optimizations are specified in the Kernel using
pragmas and attributes supported by Vivado HLS [7]. In
the SDAccel environment, Kernel code can be written in
C or C++, OpenCL or RTL. Last semester this project
was carried out with an OpenCL kernel because of its
standardized API designed to support parallel comput-
ing, complex device mangagement and high level of ab-
straction. However, it was difficult to optimize the code
and use the features in OpenCL due to the lack of doc-
umentation for designing OpenCL programs for FPGA
hardware. A decision was taken to switch to C++ kernel
owing to the abundance of resources available as well as
Xilinx tutorials. An advantage of C++ kernels is support
for fixed point arithmetic. The Ising Simulate currently
use floating point numbers for computation but using
fixed point arithmetic will save the power efficiency and
area significantly while keeping the same level of accu-
racy, thus help accelerate the simulator. The shift to
C++ kernels has made it easier to find kernel examples
and debug the code.

II. OPTIMIZATION OF THE MATRIX VECTOR
MULTIPLICATION PROGRAM

To understand how to program kernels in C++, a ma-
trix vector multiplication kernel was created. The host
code was also rewritten to interface with this new ker-
nel. The purpose behind creating this program was to
understand writing kernels in C++ as so to eventually
accelerate the Ising Simulator using C++ kernels appli-
cations run on the FPGA. Since the main operations in-
volved in the Ising Simulate Architecture are multipli-
cation and addition operations on matrix and vectors,
it was appropriate to create matrix vector multiplica-
tion program. A similar approach was used last semester
while writing kernel code in OpenCL. The basic matrix
vector multiplication code consists of a nested loop. The
Figure 2 shows the implementation of the matrix vector
multiplication in sequential architecture resulting from
an unoptimized code. The whole idea of accelerating the
code on a FPGA take advantage of the highly distributed
and parallel FPGA architecture to provide a performance
boost compared to running on a CPU. Different versions
of the code were created using techniques documented
below for optimization. A System Estimate Report was
generated for each version for different sizes of datasets.
The scaling as size increased, timing, latency and re-

3

source utilization such as DSPs and RAM were compared
for each of the runs [8].

FIG. 2. The implementation of a basic matrix vector multipli-
cation. Each iteration involves a multiplication and addition.
The input matrix - mat is of size NxN, input vector vec is
size 1xN and the output vector product is of size 1xN. These
same variable names are used in the figures below.

A. Loop Unrolling

In loop unrolling the body of the loop is replicated as
many times as a given factor and the loop iterations are
also decreased by that factor. So, the loop body does
more computation than usual and all the statements in
the body are executed in parallel if permitted by data de-
pendency. The method provides the advantage of higher
latency but at the cost of system size. This implemen-
tation creates the most parallelism possible [9. Loops
can only be unrolled if the number of loop iterations are
known beforehand. In the first optimized version of the
code, only the inner loop was completely unrolled by the
compiler. It should be noted that the inner loop itera-
tions are dependent on each other, as the sum needs to be
increased after each iteration. Figure 3 shows the imple-
mentation of a matrix vector program for 8 by 8 matrix.
While this improved the latency, the resource utilization
measured by the DSPs and LUTs was extremely high as
compared to the basic kernel. The program did not even
build for a matrix greater than 100 by 100 elements due
to lack of space on the instance. A substantially better
resource utilization was achieved by partially unrolling
the inner loop by a factor of five by the compiler. On
increasing this factor, the resource utilization becomes
extremely high and the code cannot build due to lack
of space on the current instance. To further optimize,
the product variable was array partitioned. Local arrays
are stored on BRAM resources by the FPGA, which is a
dual port memory so only two elements can be written
to the product vector in a cycle. By stating that product
vector is kept in registers, multiple memory assignments
can be performed in parallel, thus optimizing the pro-

gram. Array partitioning is explained in subsection C.
Two other versions were tested one with a partially un-
rolled outer loop along with a partially unrolled inner
loop and another with a partially unrolled outer loop
only. The first version required extremely large number
of FPGA resources. However, the latter was efficient in
terms of computational resources used but the latency
was not optimized as much. In conclusion, a partially
unrolled inner loop provides the most efficient results in
terms of loop unrolling.

FIG. 3. The implementation of a single outer loop iteration
of a completely unrolled inner loop for a matrix vector mul-
tiplication kernel for a 8 by 8 matrix.

B. Loop Pipelining

In loop pipelining, subsequent iterations of the loop
body are pipelined. This means that different sections
overlap and run concurrently instead of waiting for one
loop iteration to finish executing. Initiation internal is
the number of cycles between the start of two iterations
of the loop. When a loop is pipelined in SDAccel, the
compiler tries to achieve an initiation interval of 1, how-
ever this is not possible in our case due to the data de-
pendency of the inner loop. Despite not achieving an
initiation interval of 1 loop, pipelining significantly re-
duces the interval of the loop and does not affect the
latency. Both versions with the inner loop pipelined and
outer loop pipelined were executed and analyzed. When
the outer loop is pipelined, the SDAccel compiler ties to
flatten the nested loops and then pipeline them, how-
ever this is only possible if there are no data dependen-
cies. Both the versions had similar number of DSP usage,
which was significantly less than the unrolled loop, but

4

the latency optimization was minimal. Next, the outer
loop was pipelined, and the inner loop was partially un-
rolled. This implementation used lesser computational
resources than the unpipelined version. The pipelined
behavior of the matrix vector multiplication product for
an 8 by 8 matrix with a completely unrolled inner loop
is shown in Figure 4. A further improvement would be
to pipeline the multiplication operator used in the inner
loop to allow a new multiplication to start every cycle
with a certain latency. This will help reduce the over-
all loop latency. This implementation has not yet been
tested. In conclusion, the most effective implementation
involves pipelined outer loop with partially unrolled inner
loop.

FIG. 4. The implementation of a single outer loop iteration
of a completely unrolled inner loop for a matrix vector mul-
tiplication kernel for a 8 by 8 matrix.

C. Other Techniques

Array Partitioning is a technique which reorganize the
data in an array into different array partition, each hav-
ing its own memory ports. There are different techniques
to partition the array - cyclic, block, complete. For ac-
cessing a matrix row wise for the matrix vector product,
block partition is used where each partition is of row size.
Complete partition, where each element is partitioned
into a different array, was used in one version for both

pipelining and loop unrolling. The advantage of doing
this is allowing multiple access to the array during one
cycle as compared to the dual memory port assigned to
a single array. Data flow optimization is another method
used to improve kernel performance. This refers to max-
imizing the usage of the available data bandwidth while
transferring data between the global memory and the lo-
cal memory.

Pipelined Inner Loop
Size LSI LUT DSP FF
10 110 3466 40 5616
20 422 5888 80 10233
100 10015 1653 5 1898
1000 2000022 1925 5 1682
5000 5000022 1950 5 1699

Unrolled Completely Loop
Size LSI LUT DSP FF
10 220 4879 100 6757
20 821 5123 200 10254
100 20022 32181 400 23940
1000 NB NB NB NB
5000 NB NB NB NB

The Table above shows the resultant computational re-
sources and time for the kernel execution for various ma-
trix sizes. LSI - Latency Start Interval - the amount of
time that has to pass between invocations of a compute
unit for a given kernel. FF, LUT, and DSP are variables
used by the SDAccel Application to generate custom logic
for each compute unit in the design. Similar tables were
made for loop unrolling with a factor 2, factor 5, Size/2
number of work items and pipe lined outer loop for anal-
ysis. Apart from this the detailed kernel trace were also
used for analysis.

III. CONCERNS AND FUTURE
DEVELOPMENT

The next goal for this project would be to rewrite the
Ising simulate code as a C++ kernel and host code. De-
signs choices will require choosing the parts of the code
to optimize as kernel code and accelerated on the F1 in-
stance and the remaining as host code which is run on
the CPU. A number of different kernels will be used in
this process, first being the optimized matrix vector mul-
tiplication kernel. A kernel which performs vector ad-
ditions and another which scales vectors will be created
using C++. These kernels will also be optimized using
the methods described in Section III. Various versions of
the Ising simulate goal will then be created using combi-
nations of these kernels and the remaining code run by
the host. When this was attempted in the past using
OpenCL kernel, the program could not build and had
strange use of computational resources. The code in the
CIM GitHub repository for full FPGA is currently being
used for this purpose. Once this code has been acceler-
ated the most recent Ising simulator will be accelerated.

5

The long-term goal for this project, is to accelerate the
MAX-k-SAT problem solver on the FPGA using the same
process. Further progress will be made on this during the
summer.

There have been a few issues regarding memory space
on the F-1 instance. Performing a System Build and
creating an Amazon FPGA Image (AFI) have not been
possible for the optimized versions of the matrix vector
multiplication code due to the lack of a powerful instance.
Most of the System Estimate Reports used for analysis
in Section III were based on the Hardware Emulation.
Another difficulty was understanding the reason behind
the behavior of the program during loop optimizations,

especially the extremely high number of computational
resources used during loop unrolling.

ACKNOWLEDGMENTS

I would like to thank Professor Peter McMahon for
giving me the opportunity to work in his lab. I also want
to thank Tatsuhiro Onodera for supervising me through
this research project. I appreciate Marty Sullivan, from
Cornell IT, for giving me access to use his AWS account
to execute this project. I also want to thank Darren
Schachter, who was previously working on this project,
for guiding me through the whole process.

[1] P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly,
C. Langrock, S. Tamate, T. Inagaki, H. Takesue,
S. Utsunomiya, K. Aihara, and et al. A fully
programmable 100-spin coherent ising machine with all-
to-all connections. [Online]. Available: https://science.
sciencemag.org/content/354/6312/614

[2] K. Schlachter and J. Tompson, “An introduction to the
opencl programming model,” Nov 2019. [Online]. Avail-
able: https://cims.nyu.edu/∼schlacht/OpenCLModel.
pdf

[3] “Opencl specification,” Opencl Specification -
an overview — ScienceDirect Topics. [On-
line]. Available: https://www.sciencedirect.com/topics/
computer-science/opencl-specification

[4] “Fundamental concepts of application host code.”
[Online]. Available: https://www.xilinx.com/video/
hardware/concepts-of-application-host-code.html

[5] 2009. [Online]. Available: https://www.khronos.org/
registry/OpenCL/sdk/1.0/docs/man/xhtml/local.html

[6] “The opencl specification,” 2009. [Online]. Avail-
able: https://www.khronos.org/registry/OpenCL/
specs/opencl-1.0.pdf

[7] “Programming c/c++ kernels.” [Online]. Avail-
able: https://www.xilinx.com/html docs/xilinx2019 1/
sdaccel doc/rjk1519742919747.html

[8] “Kernel optimization.” [Online]. Avail-

able: https://www.xilinx.com/html docs/xilinx2019 1/
sdaccel doc/pxj1520531630838.html

[9] R. Kastner, J. Matai, and S. Neuendorffer, “Parallel Pro-
gramming for FPGAs,” ArXiv e-prints, May 2018.

[10] “Sdaccel development environment.” [Online]. Avail-
able: https://www.xilinx.com/html\ docs/xilinx2019\
1/sdaccel\ doc/uqp1519743299633.html\

[11] P. Frey, “Using sdaccel for host and accelerator
code optimizations,” Oct 2018. [Online]. Avail-
able: http://xilinx.eetrend.com/system/files/2019-01//
private/100017045-56943-shi yong sdaccel jin xing zhu
ji ji jia su qi dai ma you hua .pdf

[12] S. Ghose and J. Tse, “Tuning the matrix multiply
algorithm.” [Online]. Available: https://jontse.com/
courses/files/cornell/cs5220/project01 matmul.pdf

[13] “Kernel optimization: loop pipelining -
other optimizations.” [Online]. Available:
https://zh-tw.coursera.org/lecture/fpga-sdaccel-theory/
kernel-optimization-loop-pipelining-pj9Jz

[14] Xilinx, “Xilinx/sdaccel-tutorials.” [Online]. Avail-
able: https://github.com/Xilinx/SDAccel-Tutorials/
tree/master/docs/aws-getting-started/CPP

[15] D. Schachter, “Aws getting started with
amazon instances.” [Online]. Available:
https://github.com/mcmahon-lab/CIMSimulator/
blob/master/AWS/Getting\%20Started\%20with\
%20Amazon\%20F1\%20Instances.pdf

