ner.utils.visualize module#
- ner.utils.visualize._get_pred_tags_and_unk_tokens_from_text(tokenizer: Tokenizer, model: Module, text: List, device: device = device(type='cpu')) Tuple[List[str], ndarray] #
Get the tag predictions (using a model) and unknown tokens from the input list of tokens.
- Parameters:
- tokenizer
Tokenizer
Tokenizer.
- model
Module
Model.
- text
List
Text.
- device
torch.device
Device.
- tokenizer
- Returns:
List
[str
]Predicted tags.
np.ndarray
Unknown tokens.
- ner.utils.visualize._print_convention()#
Print the color convention used in activation visualization plots.
- ner.utils.visualize.inspect_preds(tokenizer: Tokenizer, model: Module, text: List, labels: List | None = None, device: device = device(type='cpu')) List[str] #
Inspect predictions at a token-level.
- ner.utils.visualize.visualize_activations(tokenizer: Tokenizer, model: Module, module: Module | Module, text: List, prev_layer_module: Module | Module | None = None, labels: List | None = None, nonlinearity: Callable | None = None, device: device = device(type='cpu'), cbar: bool | None = True, figsize: Tuple[int, int] | None = None, fontsize: int = 8)#
A function to visualize activations by attaching forward hooks to the model.
- Parameters:
- tokenizer
Tokenizer
Tokenizer.
- model
Module
Model.
- module
Union
[Module
,nn.Module
] Module.
- text
List
Text.
- prev_layer_module
Optional
[Union
[Module
,nn.Module
]] Previous layer module.
- labels
Optional
[List
] Labels.
- nonlinearity
Optional
[Callable
] Nonlinearity.
- device
torch.device
Device.
- cbar
Optional
[bool
] Whether to show colorbar.
- figsize
Tuple
[int
,int
] Figure size: (width, height).
- fontsize
int
Font size.
- tokenizer