ner.utils.visualize module#

ner.utils.visualize._get_pred_tags_and_unk_tokens_from_text(tokenizer: Tokenizer, model: Module, text: List, device: device = device(type='cpu')) Tuple[List[str], ndarray]#

Get the tag predictions (using a model) and unknown tokens from the input list of tokens.

Parameters:
tokenizerTokenizer

Tokenizer.

modelModule

Model.

textList

Text.

devicetorch.device

Device.

Returns:
List[str]

Predicted tags.

np.ndarray

Unknown tokens.

ner.utils.visualize._print_convention()#

Print the color convention used in activation visualization plots.

ner.utils.visualize.inspect_preds(tokenizer: Tokenizer, model: Module, text: List, labels: List | None = None, device: device = device(type='cpu')) List[str]#

Inspect predictions at a token-level.

Parameters:
tokenizerTokenizer

Tokenizer.

modelModule

Model.

textList

Text.

labelsOptional[List]

Labels.

devicetorch.device

Device.

Returns:
List[str]

Predicted tags.

ner.utils.visualize.visualize_activations(tokenizer: Tokenizer, model: Module, module: Module | Module, text: List, prev_layer_module: Module | Module | None = None, labels: List | None = None, nonlinearity: Callable | None = None, device: device = device(type='cpu'), cbar: bool | None = True, figsize: Tuple[int, int] | None = None, fontsize: int = 8)#

A function to visualize activations by attaching forward hooks to the model.

Parameters:
tokenizerTokenizer

Tokenizer.

modelModule

Model.

moduleUnion[Module, nn.Module]

Module.

textList

Text.

prev_layer_moduleOptional[Union[Module, nn.Module]]

Previous layer module.

labelsOptional[List]

Labels.

nonlinearityOptional[Callable]

Nonlinearity.

devicetorch.device

Device.

cbarOptional[bool]

Whether to show colorbar.

figsizeTuple[int, int]

Figure size: (width, height).

fontsizeint

Font size.