Federated Learning

Eugene Bagdasaryan
CS 5450, 11/7/18

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
Predictive keyboard example

• Users don’t like typing and do it with mistakes
• Solution: predictive keyboard/search that suggests next word to type
• Use Machine Learning to build good model
Common ML pipeline

Google Search example

send data

company
Common ML pipeline

Data → Model

training

send data

Google Search example

company
Common ML pipeline

Google Search example
ML Intro. Deep Learning

• Deep Learning gives good performance on all sets of tasks:
 • Object recognition
 • Machine translation
 • Recommender Systems

• It builds very complex representations of objects (words, images)
• Cool, fun and you should try it some time
model = ML()
optimizer = SGD(model)
for e in epochs:
 for pos in range(batch_number):
 input, target = get_batch(dataset, pos)
 pred = model(input)
 loss = Loss(pred, target) # compare results
 loss.backward() # calculate updates to model
 optimizer.step() # apply model
ML Intro. Deep Learning

```python
def main():
    model = ML()
    optimizer = SGD(model)
    for e in epochs:
        for pos in range(batch_number):
            input, target = get_batch(dataset, pos)
            pred = model(input)
            loss = Loss(pred, target)  # compare results
            loss.backward()  # calculate updates to model
            optimizer.step()  # apply model
```
Deep Learning. Systems Perspective

• Computationally expensive (needs special hardware)
• Needs lots of data to build a good model
• Training iterates over whole dataset multiple times
• Usually, centrally trained
 • Model is iteratively updated (not optimal for MapReduce)
 • Every model has ~10bLn parameters (heavy to transfer if distributed)
 • Needs low latency connection to train in distributed manner
• Issue of Privacy – users required to give access to their private messages and images for training a model
On-device inference and learning

Why on-device?
• Some services require instant response and can’t rely on network latency (predictive keyboard);
• Deep Learning needs lots of data to train good algorithms (relevant word suggestions)

Premises:
• Smartphones are now capable of running and training lightweight models;
• Users generate large amounts of data on their devices;
On-device inference
On-device inference

send data to company
On-device inference

train model on aggregated data
On-device inference

return new model to users
On-device inference

Issues:
1. Privacy of user’s data
2. Computational cost
User’s data distribution and capabilities

• **Non-IID** – every user has different data;
• **Unbalanced** – some users have more data than others;
• **Massively distributed** – millions of smartphones;
• **Limited communication** – mobile devices are frequently offline or on slow or expensive connections.
Distributed Machine Learning

1. local training
2. only new models are sent, not data
3. New models are combined into a global model

0. distribute global model to a subset of participants

Global Model

company
Distributed Machine Learning

models will collide when updated sequentially

Global Model
ML Intro. Deep Learning

model = ML()
optimizer = SGD(model)
for e in epochs:
 for pos in range(batch_number):
 input, target = get_batch(dataset, pos)
 pred = model(input)
 loss = Loss(pred, target) # compare results
 loss.backward() # calculate updates to model
 optimizer.step() # apply model
Distributed ML

You can’t just distribute a model – how to aggregate them after they trained?
Important: Updates to a global model should be **iterative**

Solutions:

1. **SGD**
 1. Users send update for *every batch* to the global server
 2. Global server applies every update and distributes new model to next participant

2. **Federated SGD**
 1. User trains local model on *their* data (1 epoch) and sends the model to a global server.
 2. Global server applies every update and distributes new model to next participant

3. **Federated Averaging (Federated Learning)**
 1. Group of users train local models and send all models to a global server
 2. Global server *averages* received updates and distributes new model
Federated Learning

1. Local training
2. Only new models are sent, not data
3. New models are averaged and added to a global model

Global Model

0. Distribute global model to a subset of participants

Company
Federated Learning

0. Distribute global model to a subset of participants

1. Local training

2. Only new models are sent, not data

3. New models are averaged and added to a global model

Global Model

Averaging subset of users allows to train model faster
Algorithm can tolerate drop of participants
Federated Averaging algorithm

1. m users selected each round t
2. Every user trains a local model L_{i}^{t+1}
3. L_{i}^{t+1} is submitted to a global server and averaged with others
4. Result is added to initial global model with coefficient η

$$G^{t+1} = G^{t} + \frac{\eta}{n} \sum_{i=1}^{m} (L_{i}^{t+1} - G^{t})$$
Federated Learning algorithm

Server Executes:
input:
- n – total number of participants
- m – subset size for training


```python
global_model = Model()
for round in E:
    sum = 0
    S = select subset m from n;
    for p in S:
        sum += ClientUpdate(global_model)
    model += m/n * sum
```

ClientUpdate(global_model):
input:
- data – local data
- global_model – input from global server

```python
model = global_model
for epoch in E_Local:
    for batch in data:
        # normal training
        update_model(model, batch)

return model - global_model
```
Federated Learning algorithm

Server Executes:
input:
n – total number of participants
m – subset size for training

global_model = Model()
for round in E:
 sum = 0
 S = select subset m from n;
 for p in S:
 sum += ClientUpdate(global_model)
 model += m/n * sum

ClientUpdate(global_model):
input:
data – local data
global_model – input from global server

model = global_model
for epoch in E_Local:
 for batch in data:
 # normal training
 update_model(model, batch)
return model - global_model

just bunch of digits
Training results

• Global model converges faster than FedSGD, SGD (less communication rounds)
• User’s models can train locally for multiple epochs
• Server can decrease size of the model update
Startups that use Federated Learning

• “True” Federated Learning
 • After Bitcoin, people have free GPUs...
 • Companies don’t want to waste resources on training models

• Simplified Federated Learning (Hospitals, Financial Institutions, etc)
 • Train local models on private data
 • With small number of participants can use different training approach
 • Have some privacy issues

• Probably build a good infrastructure?
 • Secure
 • Data verification
Federated Learning. Summary

- No need to send user’s data to a company
- Users share only model weights (not really private, but OK)
- Achieves comparable performance as in centralized training
- Averaging subset of users – no need to have all users online
- Reduces computation burden on company’s datacenter and network
- Works with non-iid data
Federated Learning. Summary

• No need to send user’s data to a company
• Users share only model weights (not really private, but OK)
• Achieves comparable performance as in centralized training
• Averaging subset of users – no need to have all users online
• Reduces computation burden on company’s datacenter and network
• Works with non-iid data
• But nobody knows what do these model weights mean
Security in Federated Learning

Model weights still might reveal a lot of information (model inference)
 • An adversary can extract SSN number typed only once
 • Secure Aggregation hides what users submitted from global server
 • Global server doesn’t know who submitted a model
 • Add Differential Privacy to training (noise and weight restrictions)
 • Hurts performance
 • Requires millions of performance to have some guarantees
Adversary’s goal

• Introduce malicious behavior into the **global** model (integrity attack)
• Remain unnoticed
• Stick in the model for a long time

Threat model

• Adversary can compromise one or multiple participants
• Adversary has complete control over compromised participant (e.g. training algorithm, hyper parameters, and data)
Integrity Attacks in ML

• Adversarial examples
 • Small perturbations that trigger model to misclassify input image
 • Need to modify input image during inference time
 • Hard to perform in text domain

• Data Poisoning
 • Train a model to intentionally put a wrong label on images
 • Lowers overall performance on the main task
Backdoor attacks

- Subtype of data poisoning
- Images with select features are labeled differently
- Features can be artificial (pixel poison) or natural (semantic poison)
- Main classification accuracy remains the same

Adversary’s goal

• Introduce malicious behavior into the global model
• Remain unnoticed
• Stick in the model for a long time
Adversary’s goal

• Introduce malicious behavior into the **global** model
• Remain unnoticed
• Stick in the model for a long time
Adversary’s goal

- Introduce malicious behavior into the **global** model
- Remain unnoticed
- Stick in the model for a long time

We assume that backdoor data is not available to benign participants
Adversary’s goal

• Introduce malicious behavior into the **global** model
• Remain unnoticed
• Stick in the model for a long time

We assume that backdoor data is not available to benign participants.
Injecting a backdoor. CIFAR

Add backdoored image to every batch:

\(x \quad y \)

- bird
- car
Injecting a backdoor. Next word prediction.
Federated Averaging algorithm

1. m users selected each round t
2. Every user trains a local model L_{i}^{t+1}
3. L_{i}^{t+1} is submitted to a global server and averaged with others
4. Result is added to initial global model with coefficient η

\[
G^{t+1} = G^{t} + \frac{\eta}{n} \sum_{i=1}^{m} (L_{i}^{t+1} - G^{t})
\]
Federated Averaging algorithm

$$G^{t+1} = G^t + \frac{\eta}{n} \sum_{i=1}^{m} (L_{i}^{t+1} - G^t)$$

Every user submits model update: $$L_{i}^{t+1} - G^t$$
Model replacement

\[X^* = G^t + \frac{\eta}{n} \sum_{i=1}^{m} (L_i^{t+1} - G^t) \]

* Malicious model \(X \) should achieve similar accuracy to \(G^t \)
Model replacement

\[X^* = G^t + \frac{\eta}{n} \sum_{i=1}^{m} (L_i^{t+1} - G^t) \]

\[L_i^{t+1} = \frac{n}{\eta} X - \left(\frac{n}{\eta} - 1 \right) G^t - \sum_{i=1}^{m-1} (L_i^{t+1} - G^t) \approx \frac{n}{\eta} (X - G^t) + G^t \]

* Malicious model \(X \) should achieve similar accuracy to \(G^t \)
Train-and-Scale

• Model replacement is efficient, but can be easily detected
• Anomaly detector looks at the norm $\left| L_i^{t+1} - G^t \right|_2$ and discard all the models that have higher than S value.
• The attacker can scale with value $\gamma \leq \frac{n}{\eta}$ and use formula:

$$
\gamma = \frac{S}{\left| \left| X - G^t \right| \right|_2}
$$
Constrain-and-Scale

• Train-and-Scale is efficient, but anomaly detectors might be more complex
• Scaling with values $\gamma \ll \frac{n}{\eta}$ will hurt performance
• As an attacker controls training, it can set a specific way of training
• Add a specific loss function to avoid anomaly detectors
Constrain-and-Scale

• Train-and-Scale is efficient, but anomaly detectors might be more complex
• Scaling with values $\gamma \ll \frac{n}{\eta}$ will hurt performance
• As an attacker controls training, it can set a specific way of training
• Add a specific loss function to avoid anomaly detectors

$$\mathcal{L}_{model} = \alpha \mathcal{L}_{class} + (1 - \alpha) \mathcal{L}_{anomaly}$$
Federated Learning Training

user A

D_{local} → train → L_{a}^{t+1}
Federated Learning Training

user A

D_{local}

G^t

train

L_{a}^{t+1}
benign participants

user C
user B
user A

D_{local}

train

L_{a}^{t+1}

G^{t}
Federated Averaging

user A

user B

user C

benign participants

\(D_{\text{local}} \)

\(G^t \)

\(L_a^{t+1} \)

\(G^{t+1} \)

train
user A

\[\mathcal{D}_{\text{local}} \quad \text{train} \quad L_{a}^{t+1} \]

user B

user C

benign participants

User M

\[\mathcal{D}_{\text{local}} \quad \text{train} \quad L_{m}^{t+1} \]

Federated Averaging

\[G^{t} \xrightarrow{\text{Federated Averaging}} G^{t+1} \]
user A

user B

user C

\(D_{\text{local}} \)

train

\(L_a^{t+1} \)

benign participants

Federated

Averaging

\(G^t \)

\(G^{t+1} \)

User M

\(D_{\text{backdoor}} \)

\(L_m^{t+1} \)

not enough power to overweight other participants
benign participants

user A

D_{local}

train

L_{a}^{t+1}

user B

user C

user M

G^{t}

G^{t+1}

Federated Averaging

D_{backdoor}

constrain and scale

L_{m}^{t+1}

Secure aggregation will make the attack impossible to detect
Attack summary

1. Use backdoor data
2. Slow down learning rate during local training
3. Modify loss function
4. Submit scaled model
5. If attacker compromises more than one participant, then the scaled model is split among them
Experiments

• CIFAR-10 dataset for image classification task
• Reddit dataset (80K users) for next word prediction task
• Attack happens when model is close to convergence
Attack results

CIFAR image classification:

- **single-shot attack**
 - (1 malicious participant)

- **repeated poison attack**

Learning rate = 0.01, instead of 0.1 for benign participants
Attack results

Word prediction:

- **single-shot attack** (1 malicious participant)

- **repeated poison attack**

Line type
- • accuracy on main task
- — baseline attack
- — model replacement attack

Text backdoor
- ▼ my headphones from bose rule
- □ adore my old Nokia
- ■ like driving Jeep
Longevity of the backdoor

backdoor: “pasta from Astoria is delicious”
Defenses

• A global server can audit submitted model for accuracy and distance
• But, models trained by benign users have bad data
Conclusion on Attack

- Federated Learning receives model weights from each participant
- Generally, all participants have non-iid data
- An adversary can submit malicious model that is hard to distinguish from benign participant’s models