Internetworking: Addressing and Scalability
Errata from last week

- It is impossible for two hosts on the same Ethernet to transmit continuously at 10Mbps because they share the same transmission medium.

- Every host on a switched network has its own link to the switch.
 - So it may be entirely possible for many hosts to transmit at the full link speed (bandwidth) provided that the switch is designed with enough aggregate capacity.

- Gigabit Ethernet is actually switched so not really in the CSMA/CD family.
Internetworking

- An arbitrary collection of networks interconnected to provide some sort of host-host to packet delivery service
Datagram architecture

- Each host has a globally unique address
 - Every packet contains enough information to enable any switch to decide how to get it to destination
 - So, every packet contains the complete destination address
- Each packet is forwarded independently of previous packets – no hard forwarding state in routers
- Best-effort delivery means packets may be:
 - delayed or dropped
 - take different routes
 - delivered out of order, delivered multiple times
Internet Protocol (IP)

- Runs on all nodes, defines infrastructure that allows networks to function as a single logical internetwork
- IP Provides a way to identify, reach, all hosts in the network
IPv4 Packet Format

- Version (4): IPv4 or IPv6
- Hlen (4): number of 32-bit words in header
- TOS (8): type of service (not widely used)
- Length (16): number of bytes in this datagram
- Ident (16): used by fragmentation
- Flags/Offset (16): used by fragmentation
- TTL (8): number of hops this datagram has traveled
- Protocol (8): demux key (TCP=6, UDP=17)
- Checksum (16): of the header only
- DestAddr & SrcAddr (32 bits each IPv4)
IP Datagram Forwarding

- every datagram contains destination's address
 - if directly connected to destination network, then forward to host
 - if not directly connected to destination network, then forward to some router
- forwarding table maps network number into next hop
- each host has a default router
- each router maintains a forwarding table

<table>
<thead>
<tr>
<th>NetworkNum</th>
<th>NextHop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R1</td>
</tr>
<tr>
<td>2</td>
<td>Interface 1</td>
</tr>
<tr>
<td>3</td>
<td>Interface 0</td>
</tr>
<tr>
<td>4</td>
<td>R3</td>
</tr>
</tbody>
</table>
IP forwarding

- **IP address**: 32-bit identifier for host, router interface
- **interface**: connection between host/router and physical link
 - router’s typically have multiple interfaces
 - host typically has one interface
 - IP addresses associated with each interface

```
223.1.1.1 = 11011111 00000001 00000001 00000001
223 1 1 1 1
```
Scaling Challenges: Addressing and Routing

host, router network layer functions:

- **transport layer**: TCP, UDP
 - routing protocols
 - path selection
 - RIP, OSPF, BGP
 - IP protocol
 - addressing conventions
 - datagram format
 - packet handling conventions
 - ICMP protocol
 - error reporting
 - router “signaling”

link layer

physical layer
Global IPv4 Addresses

- **Properties**
 - globally unique
 - hierarchical: network + host – **Class based addressing**
 - 4 Billion IP addresses, 1/2 A type, 1/4 B type, and 1/8 C type

- **Format**

 ![IPv4 Format Diagram](image)

- **Dot notation**
 - 10.3.2.4
 - 128.96.33.81
 - 192.12.69.77
Subnetting for internal scalability

- Add another level to Intranet address/routing hierarchy: *subnet*
- *Subnet masks* define variable partition of host part of class A and B addresses since spaces are so BIG
- Subnets visible only within site – NOT rest of Internet
- Make internal network more efficient

![Subnet mask and subnetted address diagram](image)

<table>
<thead>
<tr>
<th>Network number</th>
<th>Host number</th>
</tr>
</thead>
<tbody>
<tr>
<td>111111111111111111111111</td>
<td>00000000</td>
</tr>
</tbody>
</table>

Class B address

Subnet mask (255.255.255.0)

<table>
<thead>
<tr>
<th>Network number</th>
<th>Subnet ID</th>
<th>Host ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subnetted address
Subnet definition

- **IP address:**
 - subnet part - high order bits
 - host part - low order bits
- **what's a subnet?**
 - device interfaces with same subnet part of IP address
 - can physically reach each other *without* intervening router

![Diagram of a network consisting of 3 subnets](image-url)
Subnetting example

Forwarding Algorithm

\(D = \text{destination IP address} \)

for each entry \(< \text{SubnetNum}, \text{SubnetMask}, \text{NextHop}>\)

\(D1 = \text{SubnetMask} \& D \)

if \(D1 = \text{SubnetNum} \)

if NextHop is an interface

\[\text{deliver datagram directly to destination} \]

else

\[\text{deliver datagram to NextHop (a router)} \]
Internet Addressing scaling issues

- Fixed bit-size address classes: A, B, C
- Class B address exhaustion concern began late ’80s
Addressing Routing Scaling Tradeoff

- Simple approach: Allocate multiple Class C addresses instead of Class B

- Overhead: Every router needs multiple entries to reach all hosts in a remote network that has multiple Class C’s even when path to the destinations is the same

- Classic tradeoff – Address space utilization vs. Routing table space
CIDR balanced tradeoff

- Classless Inter-domain level routing: CIDR (1993)
- CIDR tries to balance the desire to minimize the number of routes that a router needs to know against the need to hand out addresses efficiently.
- CIDR uses aggregate routes
 - Uses a single entry in the forwarding table to tell the router how to reach a lot of different networks
 - Breaks the rigid boundaries between address classes
 - Variable #bits per aggregated range of addresses
Classless Address block management

- AS with 16 class C network numbers--Instead of handing out 16 addresses at random, hand out a block of **contiguous class C addresses**
 - E.g., class C network numbers from 192.4.16 through 192.4.31
 - top 20 bits of all the addresses in this range are the same
 - (11000000 00000100 0001)
 - Implicitly created 20-bit network number (which is in between class B network number and class C number)

- Requires handing out blocks of class C addresses that share common prefix

- Prefix Convention: /X after prefix, prefix length in bits
 - 20-bit prefix for 192.4.16 through 192.4.31: 192.4.16/20
 - single class C network number, 24 bits long: 192.4.16/24
IP Forwarding w/ Longest match

- Router tables may have prefixes that overlap
 - Some addresses may match more than one prefix
 - both 171.69 (a 16 bit prefix) and 171.69.10 (a 24 bit prefix) in the forwarding table of a single router
 - packet destined to 171.69.10.5 clearly matches both prefixes.

- The rule is based on the principle of “longest match”
 - 171.69.10 in this case

- A packet destined to 171.69.20.5 would match to 171.69 and not 171.69.10
Longest prefix matching

When looking for forwarding table entry for given destination address, use **longest** address prefix that matches destination address.

<table>
<thead>
<tr>
<th>Destination Address Range</th>
<th>Link interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>11001000 00010111 00010*** *******</td>
<td>0</td>
</tr>
<tr>
<td>11001000 00010111 00011000 ******</td>
<td>1</td>
</tr>
<tr>
<td>11001000 00010111 00011*** *******</td>
<td>2</td>
</tr>
<tr>
<td>otherwise</td>
<td>3</td>
</tr>
</tbody>
</table>

Examples:

- DA: 11001000 00010111 00010110 10100001
- DA: 11001000 00010111 00011000 10101010

Which interface?
Classless Addressing

- Network number may be of any length
- Represent network number with a single pair \(<\text{length}, \text{value}>\)
- All routers must understand CIDR addressing
IPv6: motivation

- initial motivation: 32-bit address space soon to be completely allocated.
- additional motivation:
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS

IPv6 datagram format:

- fixed-length 40 byte header
- 128 bit addresses
- no fragmentation allowed
IPv6 datagram format

<table>
<thead>
<tr>
<th>Ver</th>
<th>Pri</th>
<th>Flow label</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Payload len</th>
<th>Next hdr</th>
<th>Hop limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source address</th>
<th>Hop limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(128 bits)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Destination address</th>
</tr>
</thead>
<tbody>
<tr>
<td>(128 bits)</td>
</tr>
</tbody>
</table>

Data

32 bits

priority: identify priority among datagrams in flow
flow Label: identify datagrams in same “flow.”
(concept of “flow” not well defined).
next header: identify upper layer protocol for data
Other changes from IPv4

- checksum: removed entirely to reduce processing time at each hop
- options: allowed, but outside of header, indicated by “Next Header” field
- ICMPv6: new version of ICMP
 - additional message types, e.g. “Packet Too Big”
 - multicast group management functions
Transition from IPv4 to IPv6

- Impractical to upgrade all routers simultaneously:
 - no flag day
 - Incremental deployment w/mixed IPv4 and IPv6 internet
- tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers
Earlier work around: address translation

Network Address Translation: NAT

All datagrams leaving local network have the same single source NAT IP address: 138.76.29.7, different source port numbers.

Datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual).
NAT: network address translation

2: NAT router changes datagram source addr from 10.0.0.1, 3345 to 138.76.29.7, 5001, updates table

NAT translation table

<table>
<thead>
<tr>
<th>WAN side addr</th>
<th>LAN side addr</th>
</tr>
</thead>
<tbody>
<tr>
<td>138.76.29.7, 5001</td>
<td>10.0.0.1, 3345</td>
</tr>
<tr>
<td>……</td>
<td>……</td>
</tr>
</tbody>
</table>

1: host 10.0.0.1 sends datagram to 128.119.40.186, 80

3: reply arrives dest. address: 138.76.29.7, 5001

NAT router changes datagram dest addr from 138.76.29.7, 5001 to 10.0.0.1, 3345
Host Configurations

- Ethernet addresses configured into network adapter by manufacturer -- unique
- IP addresses must be unique on given internetwork AND reflect structure of the internetwork for routing
- Automated Configuration Process to get IP address: Dynamic Host Configuration Protocol (DHCP)
Dynamic Host Configuration Protocol (DHCP)

- DHCP server provides configuration information to hosts
- At least one DHCP server for an administrative domain
- DHCP server maintains a pool of available addresses
- Newly booted/attached host sends DHCPDISCOVER message to special IP address (255.255.255.255)
- DHCP relay agent unicasts message to DHCP server; waits for response
Internet Control Message Protocol (ICMP)

- Defines a collection of error messages that are sent back to the source host whenever a router or host is unable to process an IP datagram successfully
 - Destination host unreachable due to link/node failure
 - Reassembly process failed
 - TTL had reached 0 (so datagrams don't cycle forever)
 - IP header checksum failed

- ICMP-Redirect
 - From router to a source host
 - With a better route information
Address Translation Protocol (ARP)

- Map IP addresses into physical addresses
 - destination host
 - next hop router
- ARP (Address Resolution Protocol)
 - table of IP to physical address bindings
 - broadcast request if IP address not in table
 - target machine responds with its physical address
 - table entries are discarded if not refreshed
ARP Packet Format

- **HardwareType**: type of physical network (e.g., Ethernet)
- **ProtocolType**: type of higher layer protocol (e.g., IP)
- **HLEN & PLEN**: length of physical and protocol addresses
- **Operation**: request or response
- **Source/Target Physical/Protocol addresses**

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware type</td>
<td>1</td>
</tr>
<tr>
<td>ProtocolType</td>
<td>0x0800</td>
</tr>
<tr>
<td>HLen</td>
<td>48</td>
</tr>
<tr>
<td>PLen</td>
<td>32</td>
</tr>
<tr>
<td>Operation</td>
<td></td>
</tr>
<tr>
<td>SourceHardwareAddr</td>
<td>(bytes 0–3)</td>
</tr>
<tr>
<td>SourceHardwareAddr (bytes 4–5)</td>
<td>SourceProtocolAddr (bytes 0–1)</td>
</tr>
<tr>
<td>SourceProtocolAddr (bytes 2–3)</td>
<td>TargetHardwareAddr (bytes 0–1)</td>
</tr>
<tr>
<td>TargetHardwareAddr (bytes 2–5)</td>
<td></td>
</tr>
<tr>
<td>TargetProtocolAddr (bytes 0–3)</td>
<td></td>
</tr>
</tbody>
</table>