TensorFlow
Goals

◆ Library for numerical computations (read: ML)
 • Primitives for defining functions on tensors and automatically computing their derivatives
 • Tensor \(\sim \) multi-dimensional array of numbers

◆ Specify computation as a data-flow graph
 • Nodes: operations with any number of tensor inputs and tensor outputs
 • Edges: tensors that flow between operations
Dataflow Programming

All nodes return tensors
TensorFlow does not care how a node computes

```
define
  node1 = tf.constant(3.0, dtype=tf.float32)
  node2 = tf.constant(4.0, dtype=tf.float32)
  node3 = tf.add(node1, node2)
exec
  tf.Session().run(node3)  # returns 7
```
Example

\[h = ReLU(Wx + b) \]

Variables
- State retained across executions

Placeholder
- Value fed in at runtime
import tensorflow as tf

b = tf.Variable(tf.zeros((100,)))
W = tf.Variable(tf.random_uniform((784, 100), -1, 1))
x = tf.placeholder(tf.float32, (100, 784))
h = tf.nn.relu(tf.matmul(x, W) + b)
```python
import numpy as np
import tensorflow as tf

b = tf.Variable(tf.zeros((100,)))
W = tf.Variable(tf.random_uniform((784, 100), -1, 1))
x = tf.placeholder(tf.float32, (100, 784))
h = tf.nn.relu(tf.matmul(x, W) + b)

sess = tf.Session()
sess.run(tf.initialize_all_variables())
sess.run(h, {x: np.random.random(100, 784)})
```

Graph executes here
Partial Execution of Subgraphs
Parameter Server

- Hold mutable state
- Apply updates
- Maintain availability

- Perform computation
- Mostly stateless (can checkpoint state to file system)
- Can be restarted
Parameter Server Example

with tf.device("/jobs:ps/task:0/cpu:0"):
 W = tf.Variable(...)
 b = tf.Variable(...)
inputs = tf.split(0,num_workers,input)
outputs = []
for i in range (num_workers):
 with tf.device("/job:worker/task:%d/gpu:0" % i):
 outputs.append(tf.matmul(input[i],W) + b)
Computing Gradients

TensorFlow nodes have attached gradient operations

tf.train.GradientDescentOptimizer(...).minimize(...) adds optimization operation to computation graph

Gradients with respect to parameters are computed automatically via backpropagation
prediction = tf.nn.softmax(...)
label = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(label * tf.log(prediction), reduction_indices=[1]))

train_step =
tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

sess = tf.Session()
sess.run(tf.initialize_all_variables())

for i in range(1000):
 batch_x, batch_label = data.next_batch()
sess.run(train_step, feed_dict={x: batch_x, label: batch_label})
Ex: Linear Regression in TensorFlow (1)

```python
import numpy as np
import seaborn

# Define input data
X_data = np.arange(100, step=.1)
y_data = X_data + 20 * np.sin(X_data/10)

# Plot input data
plt.scatter(X_data, y_data)
```

credit: Bharath Ramsundar, Stanford CS224d tutorial
Ex: Linear Regression in TensorFlow (2)

Define data size and batch size
n_samples = 1000
batch_size = 100

Tensorflow is finicky about shapes, so resize
X_data = np.reshape(X_data, (n_samples, 1))
y_data = np.reshape(y_data, (n_samples, 1))

Define placeholders for input
X = tf.placeholder(tf.float32, shape=(batch_size, 1))
y = tf.placeholder(tf.float32, shape=(batch_size, 1))
Ex: Linear Regression in TensorFlow (3)

```python
# Define variables to be learned
with tf.variable_scope("linear-regression"):  
    W = tf.get_variable("weights", (1, 1),
        initializer=tf.random_normal_initializer())
    b = tf.get_variable("bias", (1,),
        initializer=tf.constant_initializer(0.0))

y_pred = tf.matmul(X, W) + b
loss = tf.reduce_sum((y - y_pred)**2/n_samples)
```

Note `reuse=False` so these tensors are created anew.

\[
J(W, b) = \frac{1}{N} \sum_{i=1}^{N} (y_i - (Wx_i + b))^2
\]
Ex: Linear Regression in TensorFlow (4)

Sample code to run one step of gradient descent
In [136]: opt = tf.train.AdamOptimizer()

In [137]: opt_operation = opt.minimize(loss)

In [138]: with tf.Session() as sess:
 : sess.run(tf.initialize_all_variables())
 : sess.run([opt_operation], feed_dict={X: X_data, y: y_data})
 :

Note TensorFlow scope is not python scope! Python variable loss is still visible.

But how does this actually work under the hood? Will return to TensorFlow computation graphs and explain.
Ex: Linear Regression in TensorFlow (4)

Sample code to run full gradient descent:
Define optimizer operation
opt_operation = tf.train.AdamOptimizer().minimize(loss)

with tf.Session() as sess:
 # Initialize Variables in graph
 sess.run(tf.initialize_all_variables())
 # Gradient descent loop for 500 steps
 for _ in range(500):
 # Select random minibatch
 indices = np.random.choice(n_samples, batch_size)
 X_batch, y_batch = X_data[indices], y_data[indices]
 # Do gradient descent step
 _, loss_val = sess.run([opt_operation, loss], feed_dict={X: X_batch, y: y_batch})

Let's do a deeper graphical dive into this operation
Ex: Linear Regression in TensorFlow (5)

\[
J(W, b) = \frac{1}{N} \sum_{i=1}^{N} (y_i - (Wx_i + b))^2
\]

\[
X = tf.placeholder(tf.float32, shape=(batch_size, 1))
\]

\[
y = tf.placeholder(tf.float32, shape=(batch_size, 1))
\]

\[
W = tf.get_variable(
 "weights", (1, 1),
 initializer=tf.random_normal_initializer())
\]

\[
b = tf.get_variable(
 "bias", (1,),
 initializer=tf.constant_initializer(0.0))
\]

\[
y_pred = tf.matmul(X, W) + b
\]

\[
loss = tf.reduce_sum((y - y_pred)**2/n_samples)
\]

\[
\text{opt_operation} = \text{tf.train.AdamOptimizer().minimize(loss)}
\]

credit: Bharath Ramsundar, Stanford CS224d tutorial