
INFO	2300	-	Spring	2020	(02/27/2020,	19:00) Page	1/11

Lab	Homework	5:	Component	Library	&	SQL	Queries
You'll	create	an	example	component	from	your	design	pattern	analysis	from	last	week	and	share	it	with	the	class.
You'll	also	plan,	create,	and	populate	a	database.

1.		Learning	Objectives

Contribute	to	the	course	Design	Pattern	Component	Library.
Learn	how	to	create	a	development	database	using	SQLite.
Write	SQL	queries	to	retrieve	information	from	a	database.
Retrieve	information	from	a	database	using	SQL	from	PHP	(PDO	extension).

2.		Deadline

Lab	Homework Deadline Slip	Days Credit Solution

All	Parts Sun	3/1,	11:59pm Max:	2	days 20	points	(completion) Provided

3.		Instructions

1.	 Clone	your	lab	repository.

Clone	the	following	URL:	
git@github.coecis.cornell.edu:info2300-2020sp/YOUR_GITHUB_USERNAME-lab05.git
Replace	YOUR_GITHUB_USERNAME	in	the	URL	with	your	Cornell	GitHub	username.

2.	 Sign	the	attendance	sheet.

It	is	your	responsibility	to	sign	the	attendance	sheet	before	you	leave.	If	it	wasn't	handed	to	you,	ask	to	sign
it.	No	signature	on	the	attendance	sheet	will	result	in	an	immediate	0	for	this	lab's	attendance	grade.	Forgetting
to	sign	the	attendance	sheet	will	not	be	considered	a	valid	excuse	to	have	your	lab	attendance	corrected.

3.	 Work	together.

Work	with	your	peers	to	complete	this	lab.	Talk	aloud,	discuss,	troubleshoot	problems.	You	are	encouraged	to
work	together	so	long	as	you	do	your	own	work	and	you	don't	give	away	answers.

4.	 Submit.

When	you're	finished,	follow	the	instructions	in	submit.md	to	submit	your	assignment.

INFO	2300	-	Spring	2020	(02/27/2020,	19:00) Page	2/11

Part	0:	Fix	Project	2	Repository
I	made	a	mistake	with	your	project-2	repository.	This	mistake	will	prevent	you	from	submitting	(commit	and	push)
your	database.

Open	.gitignore	in	your	project-2	repository	and	remove	the	following	lines:

###	Ignore	development	databases.
#	DO	NOT	REMOVE	THIS!	Development	database	should	not	be	checked-in	to	revision	control.
*.sqlite
*.db

Save	the	changes.	Commit	and	push.

These	lines	will	prevent	you	from	submitting	your	database.	We	cannot	grade	p2m2	or	p2fin	without	your
database!	You	must	remove	these	lines	otherwise	you	won't	be	able	to	commit	and	push	your	database.

I	strongly	encourage	you	to	double	check	your	p2m2	and	p2fin	submissions	to	ensure	that	your	database	was	pushed
to	GitHub.	No	database	on	GitHub	means	close	to	a	0	for	your	Project	2	grade.	This	is	your	notice.

INFO	2300	-	Spring	2020	(02/27/2020,	19:00) Page	3/11

Part	I:	Design	Pattern	Snippet	Library
In	last	week's	lab	you	analyzed	several	online	image	galleries	and	identified	common	design	patterns	for	online
galleries.	For	example,	you	may	have	identified	a	design	pattern	for	removing	an	image	from	the	gallery:	Tuck	the
delete	feature	away	in	a	menu.

All	that	you	need	to	code	up	most	of	these	design	patterns	is	what	you	learned	in	INFO	1300:	HTML,	CSS,	and	some
JavaScript.	For	example:	Create	a	menu	using	an	 ul 	element,	hide	it	using	CSS,	and	show	the	hidden	 ul 	using
JavaScript	when	the	user	clicks	on	your	menu	button.

You'll	want	to	use	these	design	patterns	on	your	Project	3.	However,	Project	3	is	tough.	Project	3	requires	that	you	code
an	image	gallery	and	support	user	access	controls	(e.g.	only	the	user	who	added	an	image	may	delete	it,	etc.).	Because
the	technology	involved	in	Project	3	often	catches	many	students	off	guard,	we're	going	to	help	you	prepare	by
working	on	some	of	the	design	now!	Hopefully,	this	will	help	you	focus	more	on	the	technology	and	a	little	bit	less	on
the	design	when	you're	actually	working	on	Project	3.

Objective:	Form	a	team,	identify	a	reusable	component	from	the	image	gallery	design	patterns,	code	an	example
component,	and	share	the	component	with	the	class!

1.		Example	Components

What	example	component	do	you	want	to	add	to	the	2300	Design	Pattern	Component	Library?

Think	back	to	your	discussion	last	week.	Open	a	few	image	galleries	and	review	their	designs.	Identify	small
components	that	you	might	want	to	use	in	your	own	image	gallery	in	Project	3.	For	example,	let's	say	you	select	the
button	components	for	creating	an	album	or	uploading	a	photo.	So	you	might	code	this:

Now,	take	a	moment	and	ask	yourself,	"These	buttons	really	attract	my	attention,	did	any	of	the	galleries	we	analyzed
last	week	use	buttons	with	these	hard	edges?"	Answer,	probably	not.	It's	important	to	pay	special	attention	to	the
design	details,	not	just	the	larger	workflow	of	these	patterns.	In	fact,	this	design	pattern	came	from	Google	Photos;	it
looks	nothing	like	the	implementation	above:

Yes,	they	are	still	buttons,	but	they	don't	have	the	hard	edges	and	when	your	mouse	hovers	over	them	they	turn	a
slight	blue	color	and	change	the	cursor	(using	CSS)	to	use	 cursor:	pointer; .

For	your	example	component	you	might	decide	to	implement	a	button	with	an	icon	on	the	left,	text	on	the	right,	no
border,	and	that	changes	the	style	when	hovered	over	(CSS	pseudo	selector	 :hover).

INFO	2300	-	Spring	2020	(02/27/2020,	19:00) Page	4/11

Here	are	some	examples	of	components	that	I	heard	you	all	discussing	last	week:

Buttons	with	icons	and	without	borders.
A	round	"+"	button	(add	image	to	gallery,	share,	delete,	etc.)
Toolbars	with	icons	(e.g.	image	detail	view	in	Google	Photos	for	share,	edit,	delete,	etc.).	Tip:	flexbox
3	dot	menu	button.
Drop	down	menu	with	delete	menu	item.
"Next"	and	"Previous"	buttons	that	have	no	border,	just	'<'	and	'>'.
Search	text	field	with	search	icon	on	left	side	with	placeholder	example	search	(see	Google	Photos).
Check	box	that	appears	when	hovering	over	thumbnail	(e.g.	Google	Photos).
Popover	confirmation	dialog	that	asks	if	you	want	to	permanently	delete	a	photo.

2.		Implementation

You	are	not	expected	to	work	on	this	by	yourself.	Form	teams.	You	pick	the	size	of	the	team.	I	would	suggest	you	pick	a
team	that	is	interested	in	implementing	something	you	are	interested	in	using	in	your	Project	3	gallery.

Objective:	Sit	with	your	team	and	code	an	example	component.	Your	team	picks	the	example	component	you	want	to
create.	Don't	pick	something	too	complicated;	you	need	to	finish	this	within	the	hour	and	share	it	with	the	class.

A	couple	of	restrictions:

Client-side	only	implementation.	No	PHP.
Use	only	HTML,	CSS,	and	JavaScript.	Try	to	use	methods	that	only	require	HTML	and	CSS	if	you	can.
You	may	not	use	any	HTML,	CSS,	and	JavaScript	libraries	except	jQuery.
You	may	reference	other	sources,	but	the	code	should	be	your	team's	own	work.

3.		Share	It!

Once	you	are	finished	coding	your	example	component,	as	a	team:

1.	 Take	a	screenshot	of	the	example	component.

2.	 Create	a	Campuswire	Note	post	with	the	Component	Library	category.

3.	 Title:	A	descriptive	title	for	the	component.

4.	 Post	Body:	(Tip:	Campuswire	posts	accept	Markdown.)

INFO	2300	-	Spring	2020	(02/27/2020,	19:00) Page	5/11

4.	 Post	Body:	(Tip:	Campuswire	posts	accept	Markdown.)

1.	 Write	a	short	description	of	your	component.

2.	 Include	the	screenshot.

3.	 Include	the	HTML,	CSS,	and	JavaScript	snippets	needed	in	Markdown.

How	to	write	code	snippets	in	Markdown:

HTML:

```html
<button>Upload</button>
```

<button>Upload</button>

CSS:

```css
button	{	background-image:	url(../images/add.png);	}
```

button	{	background-image:	url(../images/add.png);	}

JavaScript:

```javascript
//	Remember	to	include	jQuery	first!
$("button").keydown(function()	{	...	});
```

//	Remember	to	include	jQuery	first!
$("button").keydown(function()	{	...	});

4.	 Include	the	contributors	of	your	component.	At	a	minimum	please	post	all	of	your	NetIDs.	You	may	include
your	names	if	you	like.

You	are	encouraged	to	reference	and	use	these	example	components	in	your	own	work.	However...

Important!	You	may	not	copy	and	paste	these	components	into	your	own	code;	copy	and	pasting	these	components
into	your	own	code	is	considered	academic	misconduct.	You	may	use	the	example	components	in	the	2300	Design
Pattern	Component	Library	as	a	reference	in	your	own	code	so	long	as	you	write	the	code	yourself	(not	copy	and	paste)
and	follow	the	External	Code	Policy	for	this	course.

INFO	2300	-	Spring	2020	(02/27/2020,	19:00) Page	6/11

Part	II:	Plan,	Create,	and	Populate	a	Database
This	is	intended	to	be	homework.	In	this	part,	you'll	practice	planning,	creating,	and	populating	a	SQLite	database.
This	process	will	help	give	you	the	tools	you	need	to	work	on	Project	2,	Milestone	2.	To	help	you	develop	these	skills,
you'll	be	working	on	an	employee	database	for	Willa	Bend's	Popcorn	Stand.

1.		Plan	Database	Schema

Objective:	Before	you	create	a	database	you	must	plan	it	first.	Databases	can	be	difficult	to	change	after	they've	been
created.	For	this	section,	you'll	be	planning	the	database	schema	for	an	employee	database.

It's	easy	to	create	a	database	that	records	every	little	detail.	This	may	seem	like	good	idea	too.	But	recording	and
maintaining	a	database	is	a	lot	of	work.	It's	often	best	to	keep	track	of	only	the	information	you	need.	In	this	case
Willa	Bend	wants	to	use	this	database	to	keep	track	of	which	employees	are	staff	and	which	employees	are	managers.
Willa	Bend	also	keeps	tracks	of	all	employees	with	employee	IDs	that	look	like	your	NetID.

Objective:	Write	out	your	schema	for	the	database	in	popcorn.md.	Review	your	notes	from	the	lecture	or	ask	your
neighbor	for	their	notes	if	you're	not	sure	what	to	do	here.

Tip	1:	We	usually	use	all	lowercase	letters	and	underscores	for	names	in	web	development.

Tip	2:	Don't	forget	to	include	the	 id 	primary	key.	This	is	convention	that	many	web	frameworks	use.	It's	a	good	idea
to	get	in	the	habit	of	using	it!

2.		Create	&	Populate	Database

Objective:	Now	that	you	have	a	plan,	your	schema,	it's	time	to	create	your	database.

1.	 Install	DB	Browser	for	SQLite:	http://sqlitebrowser.org/

2.	 Open	DB	Browser	for	SQLite.

3.	 In	the	toolbar,	select	New	Database.

4.	 Save	your	database	in	the	secure	folder	of	your	Lab	5	repository	as	popcorn.sqlite.

5.	 You	will	then	be	prompted	to	create	a	table	for	your	new	database.	Using	the	schema	you	created	in	popcorn.md,
create	the	table.

Make	sure	you	use	appropriate	constraints.	If	you	don't	remember	what	constraints	are,	review	your	lecture	notes
or	ask	your	neighbor	for	their	notes.

6.	 Once	you've	created	the	table,	populate	the	database	with	at	least	5	employees	from	the	Browse	Data	tab.	See
the	sample	data	below.	Make	sure	you	get	a	mix	of	staff	and	managers!

Note	1:	You	may	need	to	make	up	information	for	fields	that	you	have	in	your	schema	that's	not	listed	below.

Note	2:	You	may	not	have	employee	names	in	your	schema.	If	that's	the	case,	just	ignore	the	name	data	below.

http://sqlitebrowser.org/
http://sqlitebrowser.org/

INFO	2300	-	Spring	2020	(02/27/2020,	19:00) Page	7/11

Employee	ID First	Name Last	Name Position

ag607 Anthony Gonzalez staff

hr255 Hector Rivera manager

ed3450 Alecia Johnson staff

rap30 Randall Pearson staff

aw123 Anne Wheeler manager

kis344 Keala Settle staff

mbj22 Michael Jordan staff

cab40 Chadwick Boseman staff

csk17 Chloe Kim staff

mak33 Maia Shibutani staff

rug12 Redmond Gerard staff

nc632 Nathan Chen manager

mnm74 Mirai Nagasu staff

law101 Letitia Wright manager

hj397 Hugh Jackman staff

6.	 Save	your	work!	Select	Write	Changes	to	save	your	database.

3.		Execute	SQL	Queries

Objective:	Now	that	you	have	created	your	database,	it's	time	to	retrieve	information	from	it	by	writing	some	SQL
queries.	For	each	of	the	natural	language	queries	below,	write	the	SQL	for	the	query	in	the	Execute	SQL	tab.	After
you've	typed	the	query,	press	control/command	+	enter/return	to	execute	your	query.	Next	check	the	results	to	make
sure	your	query	returned	the	correct	records.	If	your	SQL	query	returned	the	proper	results,	copy	and	paste	your	query
into	popcorn.md.	If	it	failed,	fix	your	query	and	try	again.

Tip	1:	If	you	get	stuck,	refer	to	the	examples	below.

Tip	2:	SQL	keywords	(i.e.	 SELECT ,	 FROM ,	 WHERE ,	 LIKE ,	etc.)	are	usually	written	in	uppercase	letters.

Tip	3:	Don't	forget	to	terminate	each	SQL	query	with	a	semicolon	(;).

INFO	2300	-	Spring	2020	(02/27/2020,	19:00) Page	8/11

3.1.		Queries

1.	 get	all	fields	for	all	employees

2.	 return	two	fields	(e.g.	first	name,	last	name)	for	employees	that	are	staff

3.	 return	a	natural	key	for	employees	who	are	managers

4.	 return	all	fields	for	the	employees	who's	first	name	starts	with	a

5.	 return	all	fields	for	the	employees	who's	last	name	ends	with	n

6.	 return	all	fields	for	the	employees	who	have	an	l	anywhere	in	their	last	name.

7.	 return	a	natural	key	for	employees	who	are	staff	and	who's	first	name	starts	with	c.

3.2.		Examples

Select	all	fields	and	all	records	from	a	table.

SELECT	*	FROM	movies;

Return	two	fields	from	a	table.

SELECT	title,	director	FROM	movies;

Get	values	where	they	equal	something.

SELECT	*	FROM	movies	WHERE	rating	=	'PG';

Get	values	that	start	with	't'	and	end	with	anything	else	(wildcard).

SELECT	*	FROM	movies	WHERE	title	LIKE	't%';

Get	values	that	end	with	's'	and	start	with	anything	else	(wildcard).

SELECT	*	FROM	movies	WHERE	title	LIKE	'%s';

Match	two	conditions.

SELECT	*	FROM	movies	WHERE	rating	=	'PG'	AND	title	LIKE	'b%';

INFO	2300	-	Spring	2020	(02/27/2020,	19:00) Page	9/11

Part	III:	Using	a	Database	with	PHP
In	Part	III	you'll	query	a	database	to	generate	content	for	the	2300	Shoe	Review.	When	done,	your	show	review	page
should	look	similar	to	the	one	below.

1.		Look	Over	the	Database	and	Code

Objective:	The	Shoe	Review	already	has	some	reviews	from	customers,	it's	currently	stored	as	secure/shoes.sqlite.
Take	a	moment	and	open	shoes.sqlite	in	DB	Browser	for	SQLite.	Look	over	the	schema	for	the	database.	Look	over	the
data.	Once	you	get	a	sense	of	what's	in	this	database,	look	over	the	code	for	shoes.php.

2.		Connect	to	the	Database

The	first	step	to	working	with	a	database	in	PHP	is	to	connect	to	the	database.	To	do	this	you	need	to	use	the	following
piece	of	code	replacing	PATH_TO_DATABASE	with	the	actual	file	name	of	the	database.

$db	=	open_sqlite_db(PATH_TO_DATABASE);

open_sqlite_db() 	is	a	user	defined	function	declared	in	init.php.	You	should	probably	use	this	function	in	your	code.
If	you'd	rather	use	PHP's	PDO	extension	directly,	you	can	use	this	code:

//	open	connection	to	database
$db	=	new	PDO('sqlite:PATH_TO_DATABASE');

//	Throw	an	exception	for	incorrect	SQL,	instead	of	being	silent.
$db->setAttribute(PDO::ATTR_ERRMODE,	PDO::ERRMODE_EXCEPTION);

INFO	2300	-	Spring	2020	(02/27/2020,	19:00) Page	10/11

The	first	line	of	this	code	connects	to	the	database	and	stores	the	connection	to	the	database	in	the	 $db 	variable.	The
variable	 $db 	is	of	type	object.	So	far	you've	only	learned	about	the	PHP	types	of	boolean,	integer,	float,	string,	array,
and	NULL.	Object	types	have	helper	functions	attached	to	the	type.	We	use	the	 $var->function() 	syntax	to	call	these
object	helper	functions.	Observe	that	in	the	second	line	of	code	we	use	the	 $db 	variable	(which	is	of	type	object)	to
call	the	object's	helper	function,	 setAttribute() .

Normally,	when	you	write	a	query	in	PHP	if	your	SQL	query	is	invalid,	you'll	get	a	boolean	saying	it's	invalid.	This	isn't
very	helpful	because	you	don't	know	what's	incorrect	about	your	query.	We	can	instead	make	PHP	throw	an	error	if
your	SQL	is	invalid.	That's	what	this	line	of	code,	
$db->setAttribute(PDO::ATTR_ERRMODE,	PDO::ERRMODE_EXCEPTION); ,	does.

Objective:	Write	the	code	at	the	top	of	shoes.php	to	connect	to	the	database.	Store	the	database	connection	in	a	
$db 	variable.

3.		Query	the	Database

Now	that	you've	connected	to	the	database,	we'll	want	to	query	the	database	and	retrieve	some	records.

Here's	the	PHP	code	for	making	a	query:

$sql	=	"YOUR	SQL	QUERY	GOES	HERE;";
$result	=	exec_sql_query($db,	$sql);

exec_sql_query() 	is	a	user	defined	function	declared	in	init.php	which	uses	PHP's	PDO	extension.	This	code	is
basically	what	 exec_sql_query() 	does	using	direct	function	calls	with	PDO.	Check	the	code	out	for	yourself.

You	should	probably	use	the	 exec_sql_query() 	function.	If	you	don't	want	to	use	 exec_sql_query() ,	you	may	call
PDO	directly	as	shown	in	init.php.

Objective:	Write	the	PHP	code	for	querying	all	the	records	in	the	reviews	table,	in	shoes.php.

4.		Output	Query	Results

After	querying	the	database,	we'll	need	to	take	the	results	of	the	query	and	generate	an	HTML	table.

To	get	the	actual	records,	use	this	code:

$records	=	$result->fetchAll();

This	asks	the	 $result 	object	to	fetch	all	the	database	records	and	stores	them	as	an	array	in	the	 $records 	variable.

$records 	is	a	multi-dimensional	array.	Each	record	in	the	 $records 	array	is	an	associative	array	with	the	key	being
the	name	of	the	database	field	and	the	value	being	the	value	of	that	field	for	that	record.

INFO	2300	-	Spring	2020	(02/27/2020,	19:00) Page	11/11

Examples:

//	get	comment	of	first	review
$comment	=	$records[0]["comment"];

//	echo	reviewer	for	second	review
echo	htmlspecialchars($records[1]["reviewer"]);

//	get	rating	for	third	review
$record	=	$records[2];
$rating	=	$record["rating"];

You	can	loop	through	all	the	records	using	a	 foreach 	loop:

foreach($records	as	$record)	{
		print_record($record);
}

Tip:	You'll	want	to	use	user	defined	function:	 print_record($record) .	See	the	example	for	accessing	the	third	review
above	for	how	you	might	print	a	record.

Contributors
The	following	individuals	made	contributions	to	this	assignment.

Kyle	Harms
Sharon	Jeong
Sophia	Wang

