
INFO	2300	-	Spring	2020	(04/06/2020,	18:14) Page	1/8

Lab	Homework	7:	Initializing	a	Database	&	SQL	Joins
In	this	lab	you	will	learn	how	to	initialize	a	database	with	only	using	SQL.	You'll	also	practice	joining	tables	using	SQL's	
JOIN 	clause.

1.		Learning	Objectives

Learn	how	to	create	a	database	with	just	SQL	(no	DB	Browser	for	SQLite).
Practice	using	the	SQL	reference	documentation.
Practice	joining	DB	tables	using	SQL	 JOIN .

2.		Deadline

Lab	Homework Deadline Slip	Days Credit Solution

All	Parts Sun	4/12,	11:59pm	ET Max:	2	days 20	points	(completion) Provided

3.		Instructions

1.	 Clone	your	lab	repository.

Clone	the	following	URL:	
git@github.coecis.cornell.edu:info2300-2020sp/YOUR_GITHUB_USERNAME-lab07.git
Replace	YOUR_GITHUB_USERNAME	in	the	URL	with	your	Cornell	GitHub	username.

2.	 Work	together.

Feel	free	to	work	with	your	peers	to	complete	this	lab.	Use	your	section	specific	chat	rooms.	Organize	a	Zoom
hangout	to	work	on	the	assignment	together.	Take	this	as	an	opportunity	for	some	virtual	human	contact!

Note:	You	are	encouraged	to	work	together	so	long	as	you	do	your	own	work	and	you	don't	give	away
answers.

3.	 Ask	questions	or	say	hi	during	your	registered	section	live	Zoom	Q	&	A.

Your	section	leaders	will	hold	a	Zoom	Q	&	A	during	your	registered	section	time.	Feel	free	to	pop	in	and	say	hi	or
ask	a	question!	Again,	use	this	as	another	opportunity	to	keep	up	with	your	fellow	Cornell	community	members!

4.	 Submit.

When	you're	finished,	follow	the	instructions	in	submit.md	to	submit	your	assignment.



INFO	2300	-	Spring	2020	(04/06/2020,	18:14) Page	2/8

Part	I:	Initialize	a	Database	for	2300	Plop	Box
We're	going	to	code	up	our	own	Dropbox-like	clone,	2300	Plop	Box.	In	this	lab,	you'll	get	the	database	ready	and
prepare	some	seed	data	to	test	with.	In	the	next	lab,	we'll	learn	how	to	implement	file	uploads	to	finish	our	Plop	Box.

In	this	lab,	we	will	create	our	database	using	SQL	rather	than	using	DB	Browser	for	SQLite.

1.		Scripting	Initializing	a	Database	with	SQL

In	your	repository,	please	open	secure/init.sql.	This	SQL	code	initializes	all	the	tables	and	seed	data	for	our	2300	site.

We	will	need	to	execute	the	queries	in	secure/init.sql	to	create	our	database.	Fortunately,	we've	provided	a	user-
defined	function	in	init.php	that	does	the	work	for	you:	 open_or_init_sqlite_db() .	Observe	that	we	have	also
removed	the	 open_sqlite_db() 	function	since	we	will	no	longer	create	databases	using	DB	Browser	for	SQLite.

Objective:	Take	a	moment	with	your	peers	and	try	and	figure	out	what	 open_or_init_sqlite_db() 	does:

function	open_or_init_sqlite_db($db_filename,	$init_sql_filename)
{
		if	(!file_exists($db_filename))	{
				$db	=	new	PDO('sqlite:'	.	$db_filename);
				$db->setAttribute(PDO::ATTR_ERRMODE,	PDO::ERRMODE_EXCEPTION);

				if	(file_exists($init_sql_filename))	{
						$db_init_sql	=	file_get_contents($init_sql_filename);
						try	{
								$result	=	$db->exec($db_init_sql);
								if	($result)	{
										return	$db;
								}
						}	catch	(PDOException	$exception)	{
								//	If	we	had	an	error,	then	the	DB	did	not	initialize	properly,
								//	so	let's	delete	it!
								unlink($db_filename);
								throw	$exception;
						}
				}	else	{
						unlink($db_filename);
				}
		}	else	{
				$db	=	new	PDO('sqlite:'	.	$db_filename);
				$db->setAttribute(PDO::ATTR_ERRMODE,	PDO::ERRMODE_EXCEPTION);
				return	$db;
		}
		return	null;
}

Note:	The	code	in	init.php	is	a	bit	more	complicated	in	order	to	help	students	remember	to	regenerate	their	database
if	init.sql	changes.

Spoiler:	This	function	checks	to	see	if	your	SQLite	database	exists,	if	it	does,	it	opens	it.	If	it	doesn't	exist,	then	it	will
create	a	new	database	by	reading	the	SQL	init	script,	and	then	executing	the	SQL	from	the	init	script.	This	creates	your



INFO	2300	-	Spring	2020	(04/06/2020,	18:14) Page	3/8

database	and	initializes	it	with	your	tables	and	seed	data.

IMPORTANT!:	You	must	reinitialize	your	database	if	you	change	init.sql!	Simply	delete	the	.sqlite	database	file
(secure/site.sqlite)	and	the	next	time	you	load	a	PHP	page	that	calls	 open_or_init_sqlite_db() 	it	will	reinitialize	the
database	for	you!

Note:	SQLite	is	a	development	database.	In	most	circumstances	you	should	not	check-in	(commit	and	push)	a
development	database	in	your	Git	repository.	Observe	that	there	is	a	.gitignore	in	the	root	of	your	repository.	Using
this	file,	we've	told	Git	not	to	allow	you	to	check-in	your	.sqlite	files.	This	is	intentional.	You	should	not	commit	your
databases	for	any	assignments	the	remainder	of	the	semester.

2.		Initialize	Database

Objective:	Look	for	the	TODO	in	init.php.	Initialize	and	create	a	connection	to	the	database.	The	database	should
named	secure/site.sqlite.	Store	the	database	connection	in	a	 $db 	variable.

3.		Create	a	Database	using	SQL

Open	secure/init.sql.

Observe	here	how	it	uses	the	 CREATE	TABLE 	statement	to	initialize	the	database's	tables.	Take	a	moment	and	review
the	reference	documentation	for	 CREATE	TABLE .	Here	are	two	links	that	might	help:

https://www.sqlite.org/lang_createtable.html
https://www.w3schools.com/sql/sql_create_table.asp

For	our	Plop	Box	we	want	a	 documents 	table	that	includes	the	following	information:

1.	 A	field	to	be	a	primary	key	to	identify	each	individual	entry.
2.	 A	field	to	store	the	original	name	of	the	uploaded	file.
3.	 A	field	to	store	the	file	extension	of	the	uploaded	file_ext.
4.	 A	field	that	takes	in	an	optional	description	that	users	may	want	to	provide	about	their	file.

Objective:	Using	the	reference	documentation	above,	write	the	SQL	code	in	secure/init.sql	to	create	our	documents
table	with	the	following	database	schema:

Field Type Not	Null Primary	Key Auto	Increment Unique

id INTEGER Yes Yes Yes Yes

file_name TEXT No No No No

file_ext TEXT No No No No

description TEXT No No No No

Tip:	If	you	want	to	check	if	you	query	is	valid,	create	a	test	database	in	DB	Browser	for	SQLite	and	execute	your	

https://www.sqlite.org/lang_createtable.html
https://www.w3schools.com/sql/sql_create_table.asp


INFO	2300	-	Spring	2020	(04/06/2020,	18:14) Page	4/8

Tip:	If	you	want	to	check	if	you	query	is	valid,	create	a	test	database	in	DB	Browser	for	SQLite	and	execute	your	
CREATE	TABLE 	query.	When	you're	done	testing,	simply	throw	away	the	test	database	and	copy	and	paste	the	SQL
query	into	your	init.sql	file.

Objective:	Test	that	your	 CREATE	TABLE 	query	in	init.sql	properly	initializes	the	database:

1.	 Uncomment	the	2	seed	data	SQL	queries	in	init.sql.

2.	 Delete	secure/site.sqlite

3.	 Refresh	the	2300	site	in	the	browser.

4.	 Visit	the	Plop	Box	page	and	see	if	you	see	two	uploads	(gregory.jpg,	cornell-seal.svg).

If	you	don't	see	the	two	uploads,	you	probably	have	an	error.	Fix	your	error	and	try	again.

4.		INSERT	seed	data	using	SQL

Seed	data	creates	entries	that	populate	the	database	when	it	is	first	created.	Seed	data	is	written	as	SQL	queries	in	our
database	initialization	script:	secure/init.sql.	The	uploaded	files	that	correspond	to	the	seed	records	are	already
stored	in	the	documents	folder	(same	name	as	 documents 	table)	under	uploads.

Objective:	Check	out	the	existing	seed	data	for	the	 documents 	table	in	secure/init.sql	and	in	uploads/documents.

Objective:	Add	3	new	seed	data	records	to	the	 documents 	table.	Make	sure	that	you	also	provide	the
corresponding	uploaded	file	in	the	uploads/documents	folder.	Each	uploaded	file	should	be	named	with	the	primary
key	and	have	the	same	file	extension	as	the	value	of	the	 file_ext 	field.	See	the	existing	seed	uploaded	files	as	an
example.

When	you	are	ready	to	test	your	seed	data,	simply	delete	the	secure/site.sqlite	file	and	then	open	or	refresh	the	Plop
Box	in	your	web	browser.	This	will	recreate	the	database	with	your	new	seed	data!	Remember	to	do	this	EVERYTIME
you	change	init.sql!



INFO	2300	-	Spring	2020	(04/06/2020,	18:14) Page	5/8

Part	II:	JOIN	Queries
When	designing	a	good	database	schema,	you	will	make	each	table	about	one	thing	and	the	define	relationships
between	tables	using	foreign	keys.	If	you	want	to	gather	information	from	multiple	tables,	you	will	need	to	SQL's	 JOIN
clause.

There	are	two	 JOIN 	type	supported	by	SQLite:

1.	 INNER	JOIN

2.	 LEFT	OUTER	JOIN

Below	are	examples	of	using	these	joins	with	the	following	data:

Our	left	table:	classes

id class_name

1 Rabbit

2 Elephant

3 Flower

4 Tiger

5 Lion

6 Sunshine

and	our	right	table:	students

id name age class_id

1 Phoebe 3 6

2 Ross 3 2

3 Monica 2 1

4 Rachel 2 3

5 Chandler 3 2

6 Joey 2 1

7 Janice 5 NULL



INFO	2300	-	Spring	2020	(04/06/2020,	18:14) Page	6/8

1.		INNER	JOIN

We	use	an	 INNER	JOIN 	when	we	don't	want	any	NULL	values	from	either	table	being	included	in	our	results.	We	only
want	matched	entries.

For	example,	take	the	following	query.

SELECT	students.name,	classes.class_name	FROM	classes	INNER	JOIN	students	ON	classes.id	=	
students.class_id;

This	query	would	 INNER	JOIN 	our	left	and	right	table	and	return	the	following	records:

students.name classes.class_name

1 Phoebe Sunshine

2 Ross Elephant

3 Monica Rabbit

4 Rachel Flower

5 Chandler Elephant

6 Joey Rabbit

You	should	notice	that	there	is	no	NULL	in	the	results	whether	in	the	 students.name 	or	 classes.class_name 	field.
You	can	see	with	the	INNER	JOIN	we	have	the	least	results	as	we	leave	out	any	un-matched	meaning	any	entries	that
would	have	a	missing	or	NULL	value.	Therefore,	Janice,	Tiger,	and	Lion	are	excluded	from	the	results.



INFO	2300	-	Spring	2020	(04/06/2020,	18:14) Page	7/8

2.		LEFT	OUTER	JOIN

We	use	a	 LEFT	OUTER	JOIN 	when	we	don't	mind	having	NULL	values	from	our	right	table	being	included	in	our
results.

For	example,	take	the	following	query.

SELECT	classes.class_name,	students.name	FROM	classes	LEFT	OUTER	JOIN	students	ON	classes.id	=	
students.class_id;

This	would	 LEFT	OUTER	JOIN 	our	right	table	to	our	left	table	when	we	want	a	result	such	as	the	following:

classes.class_name students.name

1 Rabbit Monica

2 Rabbit Joey

3 Elephant Ross

4 Elephant Chandler

5 Flower Rachel

6 Tiger NULL

7 Lion NULL

8 Sunshine Phoebe

We	start	off	with	the	left	table	information	and	add	the	information	provided	from	the	right	table,	thus	why	Tiger	and
Lion	are	included	and	Janice	is	excluded.	Because	the	entry	for	Janice	is	NULL	for	class_name,	there	is	no	existing
class_name	value	it	pairs	with	and	thus	is	left	out.



INFO	2300	-	Spring	2020	(04/06/2020,	18:14) Page	8/8

3.		Multiple	JOINS

You	can	JOIN	multiple	tables	together,	not	just	two.	If	you	want	to	JOIN	three	tables,	JOIN	the	first	two,	and	then	JOIN
the	third,	treating	the	newly	joined	table	as	one	new	"table"	(it's	not	really	a	table).

For	example:	parents

id parent_name student_id

1 Jack 2

2 Judy 3

SELECT	students.name,	classes.class_name,	parents.parent_name	FROM	classes	INNER	JOIN	students	ON	
classes.id	=	student.class_id	LEFT	OUTER	JOIN	parents	ON	students.id	=	parents.student_id;

students.name classes.class_name parents.parent_name

1 Ross Elephant Jack

2 Monica Rabbit Judy

4.		JOINS	Practice

Now	that	we've	reviewed	the	JOIN	types,	it's	time	for	you	to	get	some	practice	using	them.	You	will	answer	questions
in	joins.md.	Open	and	look	over	the	file	named	joins.md	and	the	joins.sqlite	database.

The	database	joins.sqlite	has	multiples	table	where	some	tables	share	some	information	via	foreign	keys.	In	joins.md,
we	have	written	the	information	we	would	like	to	obtain	from	the	tables;	however,	they	require	looking	at	multiple
tables,	not	just	one.

Objective:	In	the	joins.md	file,	we	have	created	questions	for	you	to	answer	to	guide	you	in	forming	the	queries.	Write
all	your	responses	and	final	query	directly	in	the	joins.md	file	for	submission.

To	test	your	queries,	open	joins.sqlite	with	DB	Browser	for	SQLite	and	go	to	the	tab	"Execute	SQL".	Run	your	queries
and	check	that	your	results	match	what	we	have	given	you.	All	of	the	queries	can	be	done	with	just	 LEFT	OUTER	JOIN
and	 INNER	JOIN .

Contributors
The	following	individuals	made	contributions	to	this	assignment.

Kyle	Harms
Sharon	Jeong


