
INFO	2300	-	Spring	2020	(04/14/2020,	19:23) Page	1/5

Lab	Homework	8:	File	Uploads
In	Lab	Homework	7	we	began	building	a	file	storing	system,	2300	Plop	Box	in	box.php.	In	lab,	you'll	complete	the
implementation	of	the	Plop	Box	by	programming	the	support	for	file	uploads.

1.		Learning	Objectives

Learn	how	to	handle	file	uploads	for	an	HTML	form.
Practice	using	reference	documentation.

2.		Deadline

Lab	Homework Deadline Slip	Days Credit Solution

All	Parts Sun	4/19,	11:59pm	ET Max:	2	days 20	points	(completion) Provided

3.		Instructions

1.	 Clone	your	lab	repository.

Clone	the	following	URL:	
git@github.coecis.cornell.edu:info2300-2020sp/YOUR_GITHUB_USERNAME-lab08.git
Replace	YOUR_GITHUB_USERNAME	in	the	URL	with	your	Cornell	GitHub	username.

2.	 Work	together.

Feel	free	to	work	with	your	peers	to	complete	this	lab.	Use	your	section	specific	chat	rooms.	Organize	a	Zoom
hangout	to	work	on	the	assignment	together.	Take	this	as	an	opportunity	for	some	virtual	human	contact!

Note:	You	are	encouraged	to	work	together	so	long	as	you	do	your	own	work	and	you	don't	give	away
answers.

3.	 Ask	questions	or	say	hi	during	your	registered	section	live	Zoom	Q	&	A.

Your	section	leaders	will	hold	a	Zoom	Q	&	A	during	your	registered	section	time.	Feel	free	to	pop	in	and	say	hi	or
ask	a	question!	Again,	use	this	as	another	opportunity	to	keep	up	with	your	fellow	Cornell	community	members!

4.	 Submit.

When	you're	finished,	follow	the	instructions	in	submit.md	to	submit	your	assignment.

INFO	2300	-	Spring	2020	(04/14/2020,	19:23) Page	2/5

Part	I:	Plop	Box	File	Upload
In	the	previous	lab,	we	set	up	the	database	table	for	our	Plop	Box.	Now	it's	time	to	implement	the	file	upload	for	our
file	upload	service.

Before	moving	on,	remember	that	the	database	DOES	NOT	store	the	files	(although	you	could	do	this	with	BLOB,	but
this	is	generally	not	considered	best	practice).	The	database	will	be	utilized	to	store	information	we	will	later	use	to
construct	the	link	to	the	file's	location	in	the	uploads	directory.	The	files	themselves	are	not	stored	in	the	database	but
rather	on	the	server's	file	system.

1.		HTML	Form	for	File	Upload

The	first	step	in	enabling	users	to	upload	files,	is	to	implement	a	form	for	uploading	files.

1.	 We	must	you	a	POST	request.

2.	 We	must	set	the	 enctype 	attribute	on	the	 <form> 	element.

Read	the	HTML4	Specifications	on	Form	content	types	to	determine	the	appropriate	content	type	our	form	needs.

enctype="application/x-www-form-urlencoded" 	-	default	form	content	type
enctype="multipart/form-data"

3.	 We	need	an	input	component	for	file	uploads.

Review	the	input	type	of	 file 	documentation:	https://developer.mozilla.org/en-
US/docs/Web/HTML/Element/input/file

Note:	When	setting	the	name	for	the	file	input,	you	want	to	avoid	"file"	as	the	naming	is	too	generic	but	use
something	like	"box_file".

4.	 We	want	to	set	a	maximum	file	size	to	1	MB	which	is	1,000,000	bytes.

This	is	a	reasonable	amount	of	space	for	most	files.	If	we	do	not	constrain	the	file	size,	this	allows	the
potential	for	our	website	server	to	be	overloaded.	If	we	allow	users	to	upload	very	large	files,	we	run	the	risk
of	running	out	of	space	very	quickly.
We	therefore	want	to	set	this	as	a	hidden	input.	You	can	learn	how	to	do	this	on	by	looking	at	example	1	in
this	reference	documentation:	http://php.net/manual/en/features.file-upload.post-method.php.

Note:	The	hidden	input	MUST	come	before	the	file	input.

Objective:	Review	the	file	upload	form	in	box.php.	Verify	that	all	three	of	these	criteria	have	been	met.	If	not,	please
correct	the	code.

https://www.w3.org/TR/html401/interact/forms.html#h-17.13.4
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/file
http://php.net/manual/en/features.file-upload.post-method.php

INFO	2300	-	Spring	2020	(04/14/2020,	19:23) Page	3/5

2.		Filter	the	Input	for	the	File	Upload	Form

Objective:	You	will	need	to	filter	the	 box_file 	and	 description 	parameters.	See	the	first	TODO	in	box.php.

Take	note	that	accessing	uploaded	files	is	different	than	parameters:

For	file	inputs,	instead	of	using	 $_POST["input_name"] ,	you	will	want	to	use	 $_FILES["input_name"] .

$_FILES["input_name"] 	($_FILES["box_file"])	is	an	associative	array.

See	the	reference	documentation	for	the	key/value	pairs:	http://php.net/manual/en/features.file-upload.post-
method.php

You	should	probably	store	the	uploaded	file	associative	array	as	a	variable:	
$upload_info	=	$_FILES["box_file"];

You	should	use	the	error	codes	to	determine	if	file	uploaded	successfully:	http://php.net/manual/en/features.file-
upload.errors.php.

Hint:	 'error' 	and	 UPLOAD_ERR_OK .

If	the	file	uploaded	successfully,	you	need	to	extract	the	filename	in	order	to	store	it	in	the	database.

The	uploaded	file	name	can	be	found	in	the	associative	array:	 $upload_info["name"]

The	 basename() 	helper	function	can	help	you	get	the	name	of	the	file:
http://php.net/manual/en/function.basename.php.

You	also	need	to	extract	the	file	extension	from	the	basename	name	above.	This	will	be	used	to	store	the	file	with
the	proper	file	extension	in	our	uploads	folder.

The	 pathinfo() 	helper	function	can	help	you	with	this:	http://php.net/manual/en/function.pathinfo.php.

You	should	also	store	all	file	extensions	as	lower	case	for	consistency.	See	the	 strtolower() 	documentation:
http://php.net/manual/en/function.strtolower.php.

$upload_ext	=	strtolower(pathinfo($basename,	PATHINFO_EXTENSION));

Tip:	 var_dump() 	(http://php.net/manual/en/function.var-dump.php)	is	always	a	useful	function	to	check	that	you	are
accessing	and	storing	your	intended	values.

Note:	You	may	feel	very	lost	and	confused	here.	That's	normal.	We	aren't	providing	much	direction	here	because	we
want	you	to	start	thinking	through	how	you	would	solve	problems	like	this	on	your	own.	We	also	want	you	to	develop
your	reference	documentation	skills.	Please	use	this	lab	as	an	opportunity	to	figure	out	how	to	make	this	work	on	your
own.	You'll	learn	a	lot	if	you	do!

http://php.net/manual/en/features.file-upload.post-method.php
http://php.net/manual/en/features.file-upload.errors.php
http://php.net/manual/en/function.basename.php
http://php.net/manual/en/function.pathinfo.php
http://php.net/manual/en/function.strtolower.php
http://php.net/manual/en/function.var-dump.php

INFO	2300	-	Spring	2020	(04/14/2020,	19:23) Page	4/5

3.		Store	the	Uploaded	File

After	you	have	filtered	the	input	for	the	file	upload,	it's	now	time	to	store	the	related	data	in	the	database	and	store	the
uploaded	file	in	the	uploads	directory.

We	do	not	store	our	file	uploads	in	the	database	because	many	databases	do	not	handle	storing	large	pieces	of
content,	like	file	uploads,	well.	Instead,	many	web	frameworks	store	files	directly	to	disk.	Recall	that	will	name	our
uploaded	file	with	the	 id 	primary	key	and	its	file	extension:	 uploads/TABLE_NAME/ID.FILE_EXTENSION

Objective:	Before	we	can	place	our	uploaded	file	in	the	uploads/documents	directory,	we	first	need	a	primary	key	for
this	upload.	That	means	we	must	first	insert	a	record	into	our	database.	Insert	a	new	record	into	the	 documents
table	with	the	following	fields:	 file_name ,	 file_ext ,	 description .

Objective:	If	the	query	successfully	inserted	the	entry	into	the	documents	table,	we'll	want	to	place	the	uploaded	file
in	the	uploads/documents	folder.

PHP	places	the	uploaded	file	in	a	temporary	location	on	your	computer:	 $_FILES["box_file"]["tmp_name"] .
You	will	want	use	the	 move_uploaded_file($_FILES["box_file"]["tmp_name"],	$new_path) 	function	to
move	the	temporary	file	to	its	permanent	home:	 $new_path	=	"uploads/documents/ID.FILE_EXTENSION"
(where	ID	is	the	primary	key	(id)	of	the	inserted	record	and	FILE_EXTENSION	is	the	 file_ext 	field).

Summary:

1.	 Insert	a	record	into	the	database	for	the	current	upload.
2.	 Construct	the	new	file	name	and	path	for	the	uploaded	file	to	the	uploads/documents	folder.

You	can	get	the	ID	of	the	last	record	inserted	into	the	database	using:	 $db->lastInsertId("id");

3.	 You	need	to	use	the	 move_uploaded_file() 	(http://php.net/manual/en/function.move-uploaded-file.php)
helper	function	to	place	the	uploaded	file	in	the	uploads/documents	directory.

You	will	want	to	move	the	uploaded	file,	 $upload_info["tmp_name"] 	to	the	file	name	and	path	you
constructed	above.

4.		Test	it!

Objective:	Test	uploading	files.	Check	that	documents	table	is	properly	updated.	Check	that	the	uploaded	file	is
moved	the	documents/uploads	folder.	If	you	encounter	any	issues,	fix	them!

Feel	free	to	discuss	this	with	a	peer	just	to	make	sure	you	both	understand	how	this	works.

Submit
Follow	the	instructions	at	the	beginning	of	this	document	to	submit	your	assignment.

http://php.net/manual/en/function.move-uploaded-file.php

INFO	2300	-	Spring	2020	(04/14/2020,	19:23) Page	5/5

1.		Contributors

The	following	individuals	made	contributions	to	this	assignment:

Kyle	Harms
Sharon	Jeong

