
INFO	2300	-	Spring	2020	(04/01/2020,	10:40) Page	1/12

Project	3:	Well-Designed	Photo	Gallery
You	will	design	and	implement	an	online	photo	gallery	in	PHP.	You	will	demonstrate	your	ability	to	design	an
aesthetically	pleasing	and	usable	interactive	site.	Your	photo	gallery	will	be	backed	by	a	database	which	you	will	use	to
store	information	about	the	images	uploaded	to	your	gallery.	To	help	organize	the	photos	in	your	gallery,	you	will
implement	the	ability	for	users	of	your	site	to	tag	the	photos.

1.		Learning	Objectives

Develop	a	professional	interactive	website	suitable	for	a	portfolio.
Develop	the	skills	to	translate	client/customer	requirements	into	a	working	implementation.
Leverage	design	patterns	to	improve	the	usability	of	your	site.
Practice	using	your	web	programmer's	toolkit	to	solve	complex	problems.
Practice	structuring	a	database	with	multiple	tables	and	foreign	keys.
Practice	building	and	querying	relationships	between	tables	using	common	fields	(joins).
Employ	best	practices	for	user	uploaded	content	for	dynamic	websites.

2.		Deadlines	&	Receiving	Credit

Milestone Points Grading	Method Slip	Days Deadline

Milestone	1	(p3m1) 25 Feedback	(completion) Maximum:	2	days
slip	days	=	no	feedback!

4/15,	11:59pm	ET

Milestone	2	(p3m2) 25 Feedback	(completion) Maximum:	2	days
slip	days	=	no	feedback!

4/22,	11:59pm	ET

Final	(p3fin) 150 Rubric
(p3m1	+	p3m2	+	p3fin)

Maximum:	2	days 4/29,	11:59pm	ET

IMPORTANT!	No	feedback	is	provided	for	milestones	submitted	with	slip	days!	If	you	want	feedback,	please
submit	by	deadline.

Milestones	are	graded	twice.	First	for	feedback	(completion	grade	only).	Lastly,	for	points	at	the	final	submission	(via
rubric).	All	work	is	graded	via	rubric	for	points	at	the	final	submission.	Use	your	milestone	feedback	to	improve
your	final	grade;	revise	milestone	work	prior	to	final	submission.

Completion	credit	will	be	awarded	so	long	as	you	made	a	good	faith	effort	to	complete	the	milestone's	requirements.
Very	obviously	incomplete	milestone	submissions	will	receive	a	0	for	the	completion	grade.

Milestone	feedback	is	not	a	pre-grade.	This	feedback	is	designed	to	catch	large	problems	(which	we	sometimes
miss).	Regardless	of	the	feedback	(or	lack	of	feedback)	that	you	get,	you	are	responsible	for	meeting	all	of	the
project's	requirements	for	the	final	submission.

INFO	2300	-	Spring	2020	(04/01/2020,	10:40) Page	2/12

Failure	to	push	your	submission	to	GitHub	is	equivalent	to	not	submitting	the	assignment.	You	will	receive	a	0.	It
is	your	responsibility	to	verify	that	you	submitted	your	assignment.

3.		Project	Tips

This	project	is	challenging.	Start	working	on	this	project	now.	Take	the	milestones	seriously.	Seek	help	early.	Do	not
wait	till	the	last	minute	to	start	the	project	or	seek	help.

Take	the	design	of	your	website	very	seriously.	Since	Project	4	was	eliminated,	your	Project	3	is	considered	your
portfolio	showcase	for	this	semester.	Your	design	should	look	professional,	be	aesthetically	pleasing,	follow	visual
design	principles,	and	be	usable	by	your	target	audience(s).

4.		Git	Repository	&	Submission

Clone	 git@github.coecis.cornell.edu:info2300-2020sp/YOUR_GITHUB_USERNAME-project-3.git .	Replace
YOUR_GITHUB_USERNAME	in	the	URL	with	your	GitHub	username.	This	is	usually	your	NetID.

Submit	all	materials	to	your	GitHub	repository	for	this	assignment.	See	README.md	in	your	Git	repository	for
submission	instructions	for	each	milestone.	Never	email	your	submission	to	the	instructor.

Tip:	Commit	and	push	your	changes	every	time	you	work	on	your	project.	Every	time	you	commit	and	push	you	store
your	changes	on	the	GitHub	server.	This	acts	as	a	back-up	for	your	work.	It	also	means	that	if	you	forget	to	submit
before	the	deadline,	there's	something	already	on	the	server	that	the	TAs	can	grade	for	partial	credit.

5.		Documenting	Design	(Design	Journey)

We	will	grade	your	design-journey.md	in	VS	Code's	Markdown	Preview.	Everything,	including	images,	must	be
visible	in	VS	Code's	Markdown	Preview.	If	it's	not	visible	in	VS	Code's	Markdown	Preview,	then	we	won't	grade	it.	We
won't	give	you	partial	credit	either.

If	you	included	images	in	your	design	journey,	they	must	be	visible	in	VS	Code's	Markdown	Preview.	No	credit
will	be	provided	for	images	in	your	repository	that	are	not	properly	linked	in	Markdown.	No	credit	will	be	given
for	design	work	not	included	in	the	documents/design-journey.md	file;	do	not	rename	this	file	or	put	your	answers
in	another	file!	Remember	to	check	and	test	all	assignment	submissions!

INFO	2300	-	Spring	2020	(04/01/2020,	10:40) Page	3/12

Requirements
Create	an	online	image	gallery.

Your	gallery	must	be	designed	for	at	least	one	specific	target	audience.

Your	design	should	be	aesthetically	pleasing	and	follow	visual	design	principles.

The	site's	navigation	and	all	content	should	be	well	organized	for	your	target	audiences.

You	will	implement	your	website	in	PHP	with	all	data	stored	in	an	SQLite	database.

When	generating	the	HTML	for	your	web	page,	you	should	use	SQL	queries	to	retrieve	specific	data	from	the
database	and	directly	use	that	data	for	your	HTML	generation.

Do	not	use	PHP	to	find	specific	data;	directly	retrieve	specific	data	from	the	database	through	well-written
SQL	queries.	For	example,	do	not	retrieve	all	the	records	from	the	database	using	SQL	and	then	use	PHP	to	loop
through	and	find	the	data	you	want.	SQL	is	much	more	efficient	at	searching	and	we	expect	you	use	it	where
appropriate.

You	may	use	HTML,	CSS,	JavaScript,	PHP,	and	SQL.

You	may	not	use	external	code	except	for	the	Lab	5	Component	Library.
You	may	use	jQuery.
You	may	not	use	Bootstrap.

You	may	optionally	build	on	your	Project	1	or	Project	2	if	you	like.	Document	your	existing	design	the	design
journey.

Note:	Use	(includes/init.php)	from	Project	3,	not	Project	1	or	2.

Note:	Your	content	can	be	something	other	than	an	image	gallery	but	it	must	follow	a	similar	structure.	If	you	choose
entities	other	than	images	and	tags,	you	should	explain	in	your	design	journey	how	your	entities	correspond	to	the
requirements	of	the	assignment	as	written	in	the	language	of	images	and	tags.

1.		Photo	Gallery

Users	should	be	able	to	view	all	images	in	your	photo	gallery	at	once.	(e.g.	a	gallery/thumbnail	page)
Users	should	be	able	to	view	all	images	for	a	tag	at	once.	(e.g.	tag	page	or	filter	by	tag	on	gallery	page)
Users	should	be	able	to	view	a	single	image	and	all	the	tags	for	that	image	at	once.	(e.g.	image	details	page)
Users	should	be	able	to	upload	a	new	image.
Users	should	be	able	to	remove	(delete)	an	image.

Make	sure	you	clean	up	any	relationships	to	the	image	in	other	tables.	(Where	the	image	is	a	foreign	key.)
Make	sure	you	delete	the	corresponding	file	upload	from	disk.

Users	should	be	able	to	view	all	tags	at	once.	(e.g.	a	list	of	tags)

Users	should	be	able	to	add	an	existing	tag	to	an	image,	add	a	new	tag	to	an	image,	and	remove	a	tag	from	an

INFO	2300	-	Spring	2020	(04/01/2020,	10:40) Page	4/12

Users	should	be	able	to	add	an	existing	tag	to	an	image,	add	a	new	tag	to	an	image,	and	remove	a	tag	from	an
image.
Tags	must	be	unique.	You	cannot	have	duplicates	of	the	same	tag.
You	may	store	and	display	any	other	type	of	data	you	like	for	the	images.	Although	none	of	this	is	required.

example:	A	user	defined	description	for	the	image	or	the	date	it	was	taken.
example:	The	file	format	or	size	of	the	image.

2.		Design

Your	design	should	be	aesthetically	pleasing	and	employ	visual	design	principles.

Your	photo	gallery	should	employ	the	common	design	patterns	you	identified	in	Lab	4.

You	may	use	the	Design	Pattern	Snippet	Library	from	Lab	5	as	a	reference	for	supporting	these	design	patterns.	If
you	use	the	component	library,	make	sure	you	follow	the	citation	requirements	as	outlined	by	the	course's
External	Code	Policy.

DO	NOT	COPY	AND	PASTE	CODE!

Do	not	design	a	website	with	"submit"	style	buttons	everywhere.	None	of	the	image	galleries	we	analyzed	in
lab	4	did	this.	You	shouldn't	either.

For	example,	delete	is	often	implemented	as	a	menu	item.

3.		Requests

All	requests	made	to	the	server	must	use	an	appropriate	request	type:	GET	or	POST.

See	guidelines	in	your	textbook	or	refer	to	INFO	1300	notes	for	guidance.

Failure	to	do	so	will	likely	result	in	multiple	deductions	due	to	the	cascading	issues	with	using	incorrect	request
types	(i.e.	security,	usability,	etc.)

If	you	do	not	require	user	input	(no	input	components),	but	need	a	GET	request,	use	a	URL	with	query	string
parameters.

GET	requests	that	do	not	require	user	input	should	use	 <a> 	elements	for	URLs	with	query	string	parameters.
Style	these	elements	to	leverage	existing	design	patterns.

For	example,	to	view	the	balloons	tag	on	the	image	gallery	page,	you	may	have	a	link	for	the	balloons	tag	that	uses
query	string	parameters:	 gallery.php?tag=balloons 	or	 gallery.php?tag_id=3 .

Another	example,	to	view	the	details	for	a	specific	image,	you	may	have	an	image	page	that	accepts	an	id:	
image.php?id=8 	or	 image.php?image_id=8

Hint:	You	will	need	to	make	extensive	use	of	query	string	parameters	for	most	of	your	links.

Hint	Hint	Hint:	https://www.php.net/manual/en/function.http-build-query.php

All	POST	requests	require	a	 	element.	(Even	if	no	user	input.)

https://www.php.net/manual/en/function.http-build-query.php

INFO	2300	-	Spring	2020	(04/01/2020,	10:40) Page	5/12

All	POST	requests	require	a	 <form> 	element.	(Even	if	no	user	input.)

Deduction	Warning:	Do	not	use	JavaScript	for	POST	requests.	Use	a	form.

For	example,	uploading	an	image	or	deleting	an	image	meets	the	guidelines	for	a	POST	request.	Remember	to
style	the	"submit"	button	to	leverage	existing	design	patterns.	Delete	should	likely	be	a	menu	item,	not	a
"submit"	style	button.

Hint:	You	may	use	hidden	inputs	if	necessary.

If	you	require	user	input	for	a	GET	request,	you	may	use	a	 <form> .

For	example,	search.	Search	requires	user	input	and	is	typically	meets	the	guidelines	for	a	GET	request.

Hint:	You	may	use	hidden	inputs	if	necessary.

Deduction	Warning:	If	you	do	not	require	user	input	for	a	GET	request,	do	not	use	a	form	with	hidden	inputs.	Use
query	string	parameters.

4.		Database

You	may	only	have	1	database;	you	may	not	create	more	than	one	database.

Your	database	may	have	as	many	tables	as	you	like.
There	is	no	requirement	for	a	minimum	number	of	tables.

You	should	plan	your	database	before	you	implement	anything.

Tip:	Planning	your	database	is	the	key	to	success	for	this	project.	A	bad	database	design	can	make	the	basic	tasks
of	this	project	extremely	difficult.

Your	plan	should	include	a	schema	for	each	table	in	your	database	with	constraints.

Your	database	is	required	to	implement	a	many	to	many	relationship.

Your	two	main	entities,	images	and	tags,	should	be	in	a	many	to	many	relationship.	One	tag	can	have	many
images	and	one	image	can	have	multiple	tags.

You	are	required	to	use	SQL	join	clauses	when	needed	gather	data	from	multiple	tables.

Deduction	Warning:	Algorithmically	implemented	search	in	PHP	is	prohibited;	you	may	not	retrieve	records	from
the	database	and	then	use	a	loop	in	PHP	to	'search'	through	the	database.	Instead,	write	a	single	SQL	query	to
achieve	the	same	result.

All	database	tables	must	have	a	primary	key	called	 id .

All	foreign	keys	should	follow	the	convention	of	singular	table	noun _id .

You	are	required	to	create/initialize	your	database	using	SQL.

INFO	2300	-	Spring	2020	(04/01/2020,	10:40) Page	6/12

You	are	required	to	create/initialize	your	database	using	SQL.

Initialize	your	database	by	using	an	initialization	script	(secure/init.sql).
Do	not	commit	and	push	any	.sqlite	or	.db	files.
You	may	ignore	the	.checksum	file	created	by	 open_or_init_sqlite_db() .
You	are	not	permitted	to	use	DB	Browser	for	SQLite	for	creating	or	modifying	your	database	for	this
assignment;	you	must	use	init.sql.
You	may	use	DB	Browser	for	SQLite	to	view	your	development	database	as	well	as	test	your	SQL	queries.
All	seed	data	must	reside	in	secure/init.sql.	Do	not	use	DB	Browser	for	SQLite	to	"create"	seed	data.

Rigorous	SQL	injection	prevention	is	required	for	this	assignment.	Use	prepared	statements	with	parameter
markers.

You	must	connect	and	interact	with	the	database	using	PHP's	PDO	extension.	No	other	methods/libraries	are
permitted.

5.		File	Uploads

All	file	uploads	should	be	placed	in	a	sub-folder	under	the	uploads	folder.

All	uploads	sub-folders	should	have	the	same	name	as	their	corresponding	database	table.

For	example,	if	you	have	a	table	called	images	then	you	should	have	an	folder	called	uploads/images.

All	files	stored	in	each	uploads	sub-folder	are	required	to	be	named	as	the	primary	key	of	the	corresponding
database	record.

For	example,	for	image	with	 id 	of	1,	you	should	store	that	as	uploads/images/1.jpg.

Hint:	Store	the	file	extension	as	a	field	for	each	record	to	support	multiple	image	formats	(jpg,	png,	gif).

Do	not	commit	any	uploaded	images	(except	seed	images)	to	your	Git	repository.

Do	not	store	file	uploads	in	the	images	folder;	store	file	uploads	in	the	uploads	folder.

Never	mix	static	site	files	with	user	data.

6.		Seed	Data	(Populated	Database	+	Images)

You	should	provide	initial	seed	data	for	your	website.

You	should	have	at	least	10	images.
You	should	have	at	least	5	tags.
At	least	3	tags	must	applied	to	at	least	1	image.
At	least	8	images	need	to	have	a	tag.
At	least	3	images	need	to	have	multiple	tags.

All	seed	data	should	be	SQL	queries	in	your	database	initialization	script	(secure/init.sql).

INFO	2300	-	Spring	2020	(04/01/2020,	10:40) Page	7/12

All	seed	data	should	be	SQL	queries	in	your	database	initialization	script	(secure/init.sql).

You	are	not	permitted	to	add	seed	data	to	your	development	database	using	DB	Browser	for	SQLite.

All	seed	image	files	should	be	stored	in	a	sub-folder	under	the	uploads	folder.

The	sub-folder	should	be	named	the	same	as	the	corresponding	database	table.
All	seed	images	should	named	to	correspond	to	their	respective	database	record's	primary	key.
Do	not	commit	files	in	the	uploads	folder	that	are	not	seed	files.

Your	seed	data	and	uploads	should	be	under	10MB.

7.		Best	Practices

Your	website's	implementation	should	follow	best	practices	(see	Project	1,	Project	2,	and	class	notes).

This	includes	making	efficient	use	of	templates	(PHP	includes)	and	user-defined	functions.

Filter	Input

You	should	thoroughly	filter	all	input.
Use	parameter	markers	in	your	SQL	queries

Escape	Output

Make	sure	you	escape	any	untrusted	inputs.

You	should	rigorously	and	thoroughly	test	your	website	and	forms	to	make	sure	there	are	no	errors	and
everything	works	as	intended.

8.		Scope

There	is	no	minimum/maximum	number	of	pages	you	need	to	implement.
You	do	not	need	to	implement	a	responsive	design	with	media	queries.
You	must	filter	input	and	escape	output	to	protect	your	database	and	your	users.
Your	forms	should	provide	corrective	feedback.
Your	forms	do	not	need	to	be	sticky.

INFO	2300	-	Spring	2020	(04/01/2020,	10:40) Page	8/12

Milestone	1:	Design,	Plan,	and	Draft	Website
In	Milestone	1,	you'll	design	and	plan	your	website	and	database.	You'll	also	generate	seed	data	and	build	a	draft	of
your	website.

Complete	the	Milestone	1	section	of	the	design	journey:	documents/design-journey.md.

1.		Design

Design	your	Project	3	website.	When	designing	take	care	to	meet	the	gallery	requirements	above.	Design	is	substantial
component	of	Project	3.	Take	it	seriously.	You	should	strive	to	produce	a	well	designed	site	that	you	would	be	proud	to
include	in	your	portfolio.

Feel	free	to	annotate	your	sketches	with	notes	about	how	the	behavior	or	design	changes	based	on	certain	conditions.
For	example,	"only	show	tags	for	this	image..."

There	is	no	minimum	number	of	sketches.	Include	as	many	as	necessary	to	fully	plan	out	your	website's	design.

2.		HTTP	Requests

Your	gallery	will	need	a	quite	a	few	HTTP	requests	to	function.	Plan	out	your	requests	in	the	design	journey.	Use	your
final	design	to	determine	every	request	you	need,	what	that	request	does,	what	type	of	HTTP	request	it	is	(GET	or
POST),	and	what	parameters	you	will	pass	along	in	your	request.

Carefully	follow	the	request	requirements	above.

3.		Plan	your	Database	Schema	&	Queries

Plan	out	your	database	schema.

Take	the	time	to	carefully	plan	your	database.	The	extra	care	you	put	into	planning	your	database	will	save	you	time	in
later	milestones	with	less	complex	SQL	queries.	Trust	me,	poorly	planned	databases	can	lead	to	some	pretty
impossible	SQL	queries.

Think	about	the	types	of	SQL	queries	you	need	to	implement	your	design.

You	may	feel	totally	lost	here.	You	may	feel	like	there	are	so	many	requirements	and	you	don't	know	where	to	begin.
This	is	normal.	It's	difficult	learning	how	to	take	the	tools	from	your	web	programmer's	toolbox	and	use	those	to
implement	something	new.	Take	it	one	step	at	a	time.	Think	about	how	you	might	write	a	query	for	each	of	the
requirements	above.	After	you	go	through	this	process,	you'll	starting	feeling	a	lot	more	confident	about	this!

INFO	2300	-	Spring	2020	(04/01/2020,	10:40) Page	9/12

4.		Plan	PHP	Code

Plan	out	the	structure	of	your	website.

Tip:	Do	not	have	a	PHP	page	for	each	table	in	your	database.	You'll	often	discover	that	the	way	you	present
information	to	your	user	is	different	than	the	way	you	store	that	information	in	the	database.

Plan	out	your	pseudocode	for	each	page.	Each	page's	pseudocode	should	indicate	where	your	planned
database	queries	will	execute.	They	should	also	take	care	to	filter	input,	and	escape	output.

For	example,	you	might	want	to	do	something	like	this:

if	the	user	uploaded	image	(SELECT	user_id	from	images	WHERE	id	=	4)	then
		show	all	tags	(SELECT	*	from	tags	WHERE	image_id	=	4)	to	the	user	so	they	can	delete	them	if	
they	want

		if	user	clicks	on	delete	link	(image.php?action=delete_tag&tag_id=10&image_id=4),	then
				(DELETE	tag_id	=	5	for	image_id	=	4	in	image_tags	table)
				(double	check	during	filter	input	that	current	user	"owns"	the	image	before	permitting	
deletion	of	tag)
		end
end

Note:	Observe	how	I'm	using	query	string	parameters	to	pass	information	back	to	the	server	in	order	to	complete
certain	requests.

It's	okay	if	your	plan	doesn't	exactly	match	your	final	code,	although	it	should	be	close.	The	point	of	this	exercise	is
to	have	you	thoroughly	think	through	how	you	will	implement	this	before	you	start	coding.	It's	a	lot	easier	to
starting	coding	once	you've	thought	through	how	you	will	code	it.	I	really	want	to	help	you	develop	this	habit	of
planning	first,	and	coding	second.	It	really	does	save	you	time	in	the	long	run	and	you'll	often	be	expected	to	do	this	for
most	programming	related	jobs.

Tip:	Feel	free	to	utilize	user-defined	functions	to	make	this	process	easier	for	you.

INFO	2300	-	Spring	2020	(04/01/2020,	10:40) Page	10/12

5.		Database	Creation	&	Seed	Data

Create	your	database	based	on	your	plan	and	populate	it	with	initial	seed	data.	Take	care	to	meet	the	"Seed	Data"
requirements	above.

You	are	not	permitted	to	create	or	populate	your	database	with	DB	Browser	for	SQLite.	For	this	project	you	will
need	to	write	the	SQL	queries	to	create	the	tables	and	insert	the	seed	data	in	the	secure/init.sql	file.	You	will	need	to
look	up	the	reference	documentation	for	creating	tables	in	SQL.	We	are	not	covering	this	in	lecture	or	labs	because	we
want	you	to	have	practice	with	SQL	reference	documentation.

We	are	using	this	script	approach	(init.sql)	so	that	once	Project	3	is	over	we	can	help	you	deploy	your	website	to	an
actual	live	production	server.	Recall	that	production	servers	do	not	usually	support	SQLite.	Instead	they	use	MySQL	or
PostgreSQL.	In	order	to	deploy	your	website	you'll	need	to	have	an	SQL	script	ready	in	order	to	create	the	database	on
actual	web	server.

You	will	also	need	to	upload	seed	image	files	for	your	seed	data.	Follow	the	requirements	in	"Seed	Data"	above.

6.		Draft	Website

Start	coding	up	your	website.	You	should	try	to	get	as	much	of	the	HTML	and	CSS	done	as	you	can.	That	way	you	can
focus	on	the	PHP	and	SQL	in	future	milestones.	It's	okay	if	you	don't	get	very	far	yet.	Just	get	it	started.

INFO	2300	-	Spring	2020	(04/01/2020,	10:40) Page	11/12

Milestone	2:	Gallery
In	Milestone	2,	you'll	begin	to	implement	the	gallery.

1.		Implementation	Requirements

The	user	should	be	able	to	view	all	images	in	a	gallery.
The	user	should	be	able	to	view	a	single	image	and	it's	details.
The	user	should	be	able	to	upload	an	image.
Your	tags	should	be	mostly	there,	but	it's	okay	if	some	of	it	doesn't	yet	work.

2.		Connecting	to	the	Database

Since	we're	no	longer	using	DB	Browser	for	SQLite,	you'll	need	handle	creating	your	database	differently	to	support
deploying	our	website	after	you've	finished	this	Project.

You	will	need	to	connect	to	your	database	using	the	
$db	=	open_or_init_sqlite_db('secure/gallery.sqlite',	'secure/init.sql'); 	function	provided	for	you	in
includes/init.php.	This	function	checks	to	see	if	your	SQLite	database	exists,	if	it	does	it	connects	to	it.	If	it	does	not
exists	(i.e.	there	is	no	gallery.sqlite	file)	then	this	function	creates	the	database	initializing	it	with	your	secure/init.sql
script.	If	you	want	to	delete	your	database,	just	delete	the	gallery.sqlite	file	and	the	next	time	you	refresh	a	page	in
your	web	browser,	your	database	will	be	recreated!

IMPORTANT!	If	you	change	secure/init.sql	you	must	delete	secure/gallery.sqlite	to	regenerate	the	database.	Many
students	fail	to	do	this	before	their	final	submission	only	to	submit	broken	init.sql	scripts.	The	database	then	fails	to
create	for	the	grader	and	we	pretty	much	have	to	give	you	a	0	because	your	Project	3	won't	work	without	a	database.
CHECK	CHECK	CHECK	your	init.sql	script	by	deleting	gallery.sqlite	and	visiting	index.php	in	your	browser
BEFORE	you	submit!

Warning:	Do	not	run	the	PHP	Server	and	DB	Browser	for	SQLite	at	the	same	time!	This	can	cause	your	database	to
become	corrupted.	If	you	need	to	view	the	database,	stop	the	PHP	server	and	then	open	DB	Browser.	When	you	are
done	with	DB	Browser	you	must	exit	it	before	you	restart	the	PHP	server.

Tip:	If	your	database	does	become	corrupted	and	you	need	a	new	one,	simply	delete	the	.sqlite	file	from	the	secure
folder.	The	next	time	you	connect	to	your	database	from	your	PHP	code,	your	database	will	be	recreated	from	init.sql.

INFO	2300	-	Spring	2020	(04/01/2020,	10:40) Page	12/12

Final	Submission:	Complete	&	Polished	Website
You	will	finish	coding	the	website	that	you	planned	in	Milestone	1	and	started	implementing	in	Milestone	2.	You	should
now	implement	everything	necessary	to	meet	the	full	requirements	of	the	assignment.	You	should	spend	most	of
your	time	polishing	your	design.	Your	design	should	be	professional,	be	aesthetically	pleasing,	employ	visual	design
principles,	and	leverage	existing	design	patterns	to	improve	usability;	your	design	should	be	worthy	of	your	portfolio.

Complete	the	Final	Submission	section	of	the	design	journey:	documents/design-journey.md.

Test	your	final	web	site	thoroughly,	especially	your	forms.	We	will	try	to	break	your	web	page	during	grading.	We	will
also	try	to	inject	HTML	&	SQL	during	grading.

IMPORTANT!	TEST	YOUR	DATABASE!	Delete	gallery.sqlite	and	visit	index.php	and	double	check	that	your	database
was	successfully	re-created	from	init.sql.	No	database	created	for	the	graders	=	0.

