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Section 1: Introduction 
The purpose of this lab was to provide an introductory exercise in RTL design using a hardware description 

language and to develop other skills including version control using Git, Linux/Unix development, and working as a 
team of design and verification engineers. The lab incorporates many important themes in computer architecture, 
and therefore relates to lecture materials as well as industry practices. We learned about functional level and register 
transfer level modeling. We designed a control unit and datapath with a split design pattern, requiring us to learn 
how to build a datapath and an FSM control unit as well as how the control unit and datapath communicate. We 
learned about encapsulation design principle and message interface design pattern through the ready/valid signal 
protocol. We practiced hierarchy design principles by defining and instantiating modules. We used an incremental 
development design methodology by beginning with a baseline design before moving on to an alternate design. All 
of these computer architecture themes are relevant not only to this class, but to how computer architecture, design, 
and verification are implemented in industry.  

The task involves designing, implementing, and verifying a 32-bit iterative integer multiplier based on a 
finite state machine control system. The first design is a fixed-latency multiplier which always takes 35 cycles to run 
a single multiplication operation, while the second design is a variable-latency multiplier that improves the 
shortcomings of the first design, namely reducing the number of individual shift operations and removing excess 
cycles after the multiplication computation has completed. We implemented a functional baseline design after about 
three days of work, while it took another two days to successfully build the alternative design. The alternative design 
significantly reduced the average number of cycles required for each calculation, especially for operands that include 
many zeros in their binary forms. However, for small negative-negative calculations, not much improvement occurs. 
This is due to the fact that most of the binary bits in the operands are ones, which eliminates the effectiveness of the 
optimization. The alternative design has little impact on clock frequency, as the critical path does not increase to the 
point where a slower clock speed is required. Although the circuit will require a little more area than the baseline 
design in order to implement a 32-bit priority encoder, this is by no means a prohibitively large increase. Similarly, 
energy consumption should increase with the alternative design due to the more complicated logic that is required. 
However, this relatively small increase in energy use can be sacrificed for the significant increase in performance 
that the alternative design brings.  

The results of the evaluation demonstrate the differences between a single-cycle processor and an FSM 
processor. A single cycle processor, much like our baseline design, has a fixed latency. Thus, we can view our 
baseline design as having a single overall cycle representing one multiplication operation that takes a large cycle 
time. This design misses the opportunity to utilize the processor’s resources. Our alternative design embodies the 
improvements of an FSM processor over a single cycle processor in that a new multiplication operation can be 
started immediately after the previous operation has arrived at the final answer, which decreases the total clock 
cycles per execution.  
Section 2: Baseline Design 

The baseline design implements a fixed-latency iterative multiplier, meaning the same amount of clock 
cycles (35) are dedicated to each execution. Our baseline design was implemented in Verilog. The main components 
of this baseline design are the datapath and control unit modules. The baseline design also utilizes an instance of a 
counter module (provided) to keep track of the clock cycles. The datapath has paths for moving data through various 
arithmetic blocks, muxes, and registers. The control unit is responsible for managing the movement of data through 
the datapath by sending out enable and mux select signals. This decomposition is an example of the modular design 
principle, which is an approach that subdivides a system into smaller modules that can be independently created. 
This method is utilized because it allows the different parts to be independently created and used in different 
systems, which is effective as well as efficient as multiple copies of the same sub-system do not need to be created 
in different systems. The datapath/control split design is illustrated in Figure 1.  

This datapath works by shifting the inputs each iteration and adding one operand to the result if the least 
significant bit of the second operand is one. The datapath, as illustrated in Figure 3, consists of 4 muxes, 3 registers, 
2 shifters, and 1 adder. The datapath uses the original operands (req_msg_a and req_msg_b) in the first cycle, but 
then uses the shifted version of these operands for all subsequent iterations to perform the multiplication. The logic 
for determining which value to use comes from the control unit and is used by the muxes. Additionally, the first 
cycle will start with the result value being 0, and will increase that value based on signals from the control unit, 



which again sends a select value to a mux. The 3 registers are a_reg, b_reg, and result_reg. These registers hold the 
values of the mux outputs. The shifters are responsible for left or right shifting a zero into the outputs of the registers 
as part of the multiplication calculation. Instead of creating separate shifter modules, we chose to directly connect 
the shifted values to the mux inputs (a_mux and b_mux). For example, if the output value of b_reg is 1101…, one of 
the inputs to the b_mux will simply be (1101…. >> 1). This was done in order to optimize calculating shifts. A 
shifter module is not necessary in order to implement this design. The add_mux chooses and outputs either the 
output of the adder or the output of the result_reg. The control logic will send signals to the datapath on which one 
to output. The adder outputs the a_reg’s output added together with the result_reg’s output. 

The control unit, as illustrated in Figure 4, has three states: IDLE, CALC, and DONE. The state should 
only leave the IDLE state and enter the CALC state whenever the given request is valid (req_val = 1). The state 
should only move from the CALC state to the DONE state when the counter’s count has reached 32, meaning 32 
clock cycles have passed and the calculation is done. Otherwise, the state stays in CALC. In the CALC state, the 
control unit sends out mux select signals to the datapath. In every cycle of the CALC state, the a_mux_sel, 
b_mux_sel, and result_mux signals are always set to 1 because the datapath should never select the initial operand 
values or 0 (for result_mux) after the IDLE state. The add_mux_sel signal’s value depends on b_lsb (1 if b_lsb = 1, 
0 if b_lsb = 0). The state should go from the DONE state back to the IDLE state when the response is ready 
(resp_rdy = 1) because the final response message has been read. In the DONE state, the control unit sends out the 
resp_val signal, which is connected to the result_en signal in the datapath. This signal indicates that the final 
response is available. The control path also clears the counter every time it reaches the IDLE state in order to begin 
counting the clock cycles for the next execution. Each execution should take a total of 35 clock cycles to finish, with 
the IDLE state taking 1 cycle, CALC state taking 31 cycles, and DONE taking 3 cycles.  

This baseline design is analogous to a single cycle processor due to it having a fixed number of cycles 
being based on the worst case scenario. This analogy makes it a great baseline design. Being able to compare our 
design to a single cycle processor, allows us to easily evaluate this design and draw conclusions about the cycles per 
instruction and the cycle time.  
Section 3: Alternative Design 

The alternative design, illustrated in Figure 7, implements a variable-latency iterative multiplier, which 
takes advantage of the operand values in order to optimize the number of cycles required to complete the 
multiplication. The alternative design is essentially an optimized version of the baseline multiplier, and this 
optimization occurs in two steps: the first step is to shift the values stored in the two operand registers more than one 
bit at a time in a single cycle if no addition operation would have occurred during those shifts in the baseline 
implementation; the second step is to terminate the multiplication sequence as soon as the final answer is reached 
instead of waiting 32 cycles every time. These optimizations make it analogous to an FSM processor with a variable 
cycle time. The changed design from the baseline to the alternative design can be seen in Figure 2.  

In the baseline implementation, the datapath would shift the values stored in the operand registers, b_reg 
and a_reg, by one bit every cycle. The control unit would then check the least-significant bit in b_reg (called b_lsb) 
and would allow the datapath to add the value in a_reg with the value in the result register, result_reg, if and only if 
b_lsb is equal to one. This is inefficient, however, because each shift operation that does not result in adding a_reg 
and result_reg uses up cycles without bringing the value in result_reg closer to the final answer.  

This problem can be solved by shifting the values of the inputs to b_reg and a_reg by the number of 
consecutive zeros at once, resulting in an addition occuring every cycle (unless operands are zero). The shift occurs 
before storing them in their respective registers. For example, if the rightmost bits of the value in b_reg are 
...1010000, then the datapath will right-shift this number by 4 such that the new least-significant bit is now equal to 
1. This way, every cycle the result_reg will make progress toward the final answer.  

Our initial thought process was to iterate through the 32-bit value in order of least-significant bit to 
most-significant, stopping once the first 1 is reached; however, while-loops are not synthesizable in real hardware. 
Instead, we chose to implement a priority encoder, with priority increasing from least-significant bit to most 
significant. The encoder takes as input the 32 bits passed through the b_mux, and outputs the number of bits by 
which to shift the values in b_reg and a_reg. In the Verilog code, this encoder is implemented as an “if- elseif- 
elseif...” construct, checking the value of the next least-significant bit in each subsequent “elseif” block. The elseif 
becomes true once the least significant 1 has been found, and then that bit number determines the shift size required. 
We chose to use a priority encoder since it can handle inputs that have more than one bit of value 1, and its behavior 
uniquely defines the required shift while providing simple input and output interfaces. Moreover, since all the inputs 



simultaneously enter the circuit, the priority encoder will not increase the critical path length by a prohibitively large 
amount. The value stored into b_reg and a_reg is shifted by the value of the output of the encoder, and the rest of the 
datapath remains the same. That way, a single bit shift still occurs at the end of each cycle in addition to the shift 
given by the encoder. We chose to implement the design this way in order to preserve the principle of modularity, in 
that adding the priority encoder did not affect the design of the rest of the datapath - it was merely another “module” 
inserted along the existing datapath. 

Another inefficiency in the baseline design was the fixed latency, since most calculations do not require the 
full 35 cycles to complete. The second goal of the alternative design was to terminate the execution of the 
multiplication task as soon as the result register contains the correct answer. Our implementation took advantage of 
the fact that the value in b_reg would be equal to zero when the final answer is computed. We added a simple 
condition flag, called “doneflag”, that has value 1 (true) when the value in b_reg is equal to zero and 0 (false) 
otherwise. The value of doneflag is an output from the datapath and input to the control unit. When the calculation 
completes and the value of doneflag is set to 1, the control unit will set the next state to DONE, thereby resetting the 
counter and sending out the proper resp_val signal to indicate that the multiplication has completed. We chose to 
check the value of b_reg using a condition flag since it was the simplest way to ensure that the computation has 
finished. Since the flag value has the same purpose and format as the logic tracking the value of the counter in the 
baseline design, it was trivial to replace the CALC -> DONE transition condition with the value of the condition 
flag. This is an example of extensibility and encapsulation, as the alternative design required no more than a change 
to the state-transition condition rather than an entire redesign of the state logic.  
Section 4: Testing Strategy 

The primary method of testing that we utilized was directed testing using line traces because it allowed us 
to easily track different values at each clock cycle, which helped us debug which part of the system was incorrect. 
Our initial testing stage consisted of getting our design to pass the given test in the IntMulBaseRTL_test.py file, 
which was multiplying two small positive numbers together. This was a good base test because it does not test for 
overflow or negative numbers. Our first few designs failed the given test case, so we used line tracing to follow 
several important values such as the resp_msg and b_lsb to determine if there was a problem with either the datapath 
or control unit. After tracking values using line tracing, we discovered there was a problem with some faulty 
connections in our datapath. One specific example was the connection to the resp_val output: while we had 
implemented the correct logic for setting resp_val, we did not realize that we had named the connection in the 
control module “result_en.” Using line tracing, we determined that the value of resp_val remained at zero 
throughout the test cases and we were able to easily connect result_en to resp_val. After fixing the connections, our 
design passed the given test case. We chose to use line tracing for our verification because it clearly shows the 
inputs and outputs to the system. Not only did it allow us to verify manually that the multiplication operation 
produced the right result, it also gave us a lot of flexibility in choosing which variables we wanted to track. 
Moreover, line tracing worked perfectly with the functional-level test harness provided to us because we could 
compare the behavior of our design to the behavior of a model that we know must be correct; we could be confident 
that as long as any test case passes in our implementation it would pass in the functional level model as well.  

We also performed unit testing because we wanted to verify the functionality of larger components like the 
priority encoder we implemented. These tests involved manually creating 32-bit input test cases and checking the 
output from the encoder. These tests were helpful for two primary reasons: they showed that the priority encoder 
would select the shift value based on the position of the least-significant 1, and they showed that any additional 1s to 
the left of the least-significant 1 would not affect the output of the encoder. We chose to use unit testing because it is 
much simpler to test the functionality of individual components before integrating them with the rest of the system - 
this is consistent with the design principles of modularity and encapsulation. After implementing and testing the 
priority encoder, it was nice to view it as a black box with input and output connections.  

Table 1 shows the test cases we created in order to test the correctness and functionality of our designs. The 
test cases were a part of unit testing. Each test case was created in order to test a different functionality of the design. 
The first three sets of test cases ensure that the identity and zero properties of multiplication are working with our 
design. The 3 positive and negative small number test cases test that the multiplication is executing correctly without 
testing for overflow. The 3 positive and negative large number test cases test for multiplication correctness with 
overflow. Masking bits allows multiple bits to be either set on, off, or inverted from on to off in a single bitwise 
operation. The low and middle order bit masking test cases ensure that our design works with masking. The sparse 
numbers with many zeros but few ones test case was created primarily for testing the alternative design. If there are 



many consecutive zero bits, the alternative design should optimize the multiplication by shifting multiple times at 
once instead of one bit at a time.  The dense numbers with many ones but few zeros test case was also created to 
primarily test the alternative design. If there are many consecutive ones and few zeros, the alternative design should 
only shift multiple times in one cycle if there are consecutive zeros. This means that if there are many ones and very 
few zeros, the baseline and alternative designs should take a relatively similar amount of clock cycles for execution. 
For example, -1 in binary means all 32 bits are 1s. Therefore, the alternative design could never shift more than once 
at each cycle, meaning the two should take the same amount of clock cycles for execution. Corner cases (such as 
truncation) and random sink and source delays were also tested for the test cases we created. Both our baseline and 
alternative designs passed all the provided and our own test cases. These diverse test cases were created because 
they tested all the functions and possible types outcomes of the multiplier and passing them allowed us to confirm 
the correctness of our designs.  
Section 5: Evaluation 

We chose to evaluate cases that would range in level of optimization, for example highly optimized, 
somewhat optimized, barely optimized, and not optimized. Our raw data for all these cases can be viewed in Table 2 
and in Graph 1. That data demonstrates that our design was not optimized only for the specific case of -1 x -1. The 
number of cycles for this worst case in our alternative design was identical to the number of cycles the baseline 
design will always take. This behavior was what we predicted since our alternative design does not greatly optimize 
numbers that have dense 1s and few 0s. Our optimization process looks for zeros so that it can skip cycles that don’t 
contribute to the final result, and -1x-1 has no zeros. So for very small negative numbers, the alternative design 
required less cycles, but was not very different from the baseline design. However, for cases of small positive 
numbers, and especially very small numbers (such as 1 through 5), the required cycles are 18% or less of the cycles 
the baseline design required. The most optimized is the case for a zero input, which only requires 3 cycles per 
multiplication (9% of what baseline design would take). Overall, for randomized inputs of all possible values, the 
number of cycles per multiplication was 19.40 (55% of baseline cycles).  This shows significant improvement in the 
alternate design with respect to cycle time, decreasing the number of cycles to roughly half of what they were in 
baseline design. Reducing the cycles per instruction increases the performance. 

The area that a particular feature occupies is an important aspect of architectural implementations and 
tradeoffs. Instruction sets that require more area are considered to be less valuable than those that require less unless 
they make up for area consumption with significant performance enhancements. The alternative design has more 
logic than the baseline design in order to optimize the number of clock cycles. Increased logic would mean increased 
area consumption with the alternative design. However, the level of optimization that the alternative design provides 
is worth the area consumption tradeoff. Therefore, although the alternative design may consume more area due to 
additional logic, the significant increase in performance that it produces makes the extra area consumption 
acceptable.  

Energy consumption is another important factor of computer architecture. Reducing energy use is a crucial 
part of reducing operating costs. However, in some situations, prioritizing energy-use reduction is not the most 
important. For example, reducing energy consumption at the cost of performance degradation may not be 
acceptable. Comparing our baseline and alternative designs, the increase in energy use caused by the additional 
priority encoder logic is easily offset by the performance optimization that the alternative design provides. As can be 
seen in Graph 1, in certain situations, the alternative design can lead to a significant reduction in cycle time, which is 
more favorable than a small decrease in energy consumption. Therefore, although the alternative design may 
consume more energy due to additional logic, the significant increase in performance that it produces makes the 
tradeoff acceptable.  

Overall, the results of the evaluation demonstrate the differences between a single-cycle processor and an 
FSM processor. A single cycle processor, much like our baseline design, has a fixed latency. Therefore, the cycle 
time and energy-consumption are not optimized because the baseline design misses the opportunity to take 
advantage of the processor’s available resources. However, as previously discussed, the alternative design optimizes 
both the cycle time and energy-consumption through increased performance and efficiency. Although the area 
consumption was not decreased with the alternative design compared to the baseline design, the upgrades that the 
alternative design brings are far more important than the amount of area that it consumes. Therefore, we can 
conclude that the alternative design is superior to the baseline design.  
 
 



 
Section 6: Additional Diagrams 

  
Figure 1: Microarchitecture: Control/Datapath Split Figure 2: Full Datapath for Alternative 
Design 
 

 
 
Table 1. Test Cases (in IntMulFL_test.py) - each set has three sub-tests numbered 1-3 
 

Test Cases #1 #2 #3 

zero * number 0 * 3 -4 * 0 0 * 0 

one * number 1 * 1 1 * 9 1 * -12 



negative one * number -1 * 1 -1 * 9 -1 * 12 

small neg * small pos -2  * 3 -5 * 12 -12 * 11 

small pos * small neg 4 * -3 7 * -10 13 * -15 

small neg * small neg -4 * 3 -7 * -9 -10 * -2 

large pos * large pos 131072 * 131072 262144 * 1048576 1024 * 8388608 

large pos * large neg 131072 * -131072 262144 * -1048576 1024 * -8388608 

large neg * large pos -131072 * 131072 -262144 * 1048576 -1024 * 8388608 

large neg* large neg -131072 * -131072 -262144 * -1048576 -1024 * -8388608 

low order bits masked -4096 * -1 -4096 * -1048573 -4096 * 8123 

middle order bits 
masked 

-2097025 * -1 -2097025 * 5 -2097025 * 2000 

sparse numbers with 
many  

zeros but few ones 

5 * 9 73 * 69 4294967296 * 1 

dense numbers with 
many  

ones but few zeros 

-9 * -9 -513 * -129 -8193 * -1 

 
 
Table 2: Alternative Design Evaluation Table 

Cases Zero Tiny Small All Tiny Negative Negative One 

Random Inputs  
(both factors) 

(0) (0, 4) (0,100) (2147483647, 
-2147483647) 

(-5, -1) (-1) 

Number of Cycles 156 205 322 970 1709 1756 

Number of Cycles 
per  

Multiplication 

3.12 4.10 6.44 19.40 34.18 35.12 

 
Table 3: Baseline Design Evaluation Table 

Cases All Cases 

Number of Cycles 1756 

Number of Cycles per 
 Multiplication 

35.12 

 
 
 
 
 
 



 
 
Table 4: Role and Task Table 

 

 sh997 byx2 yo82 

Tasks Implement baseline and 
alternative designs, 
prepare pseudocode, 
prepare high-level 
descriptions 

Implement baseline and 
alternative designs, unit 
testing, line tracing, 
debugging unexpected 
behavior 

Prepare test cases, 
implement baseline 
design, sketch out a 
datapath diagram, FSM 
diagram, or block 
diagram, keep track of 
milestones 

 
 
Graph 1: Alternative Design Evaluation Plot 

 


