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Section 1: Introduction 
The purpose of this lab was to gain experience with topics taught in class such as ISAs, basic pipelined processor 

microarchitecture, microarchitectural techniques for handling data and control hazards, and interfacing processors and memories 
through designing two pipelined processor microarchitectures for the TinyRV2 instruction set architecture. The lab incorporates many 
important themes in computer architecture like analyzing processor performance through average latency and cycles per instruction 
(CPI), and therefore relates to lecture materials as well as industry practices. We designed a control unit and datapath with a split 
design pattern, building off of what we learned in lab 1. We used an incremental development design and testing methodology by 
beginning with a baseline design before moving on to an alternate design. These computer architecture themes are relevant not only to 
this class, but to how computer architecture, design, and verification are implemented in industry.  

The lab taught us microarchitectural techniques for handling data and control hazards in pipelined designs through the RTL 
implementation of stalling, bypassing, and squashing. In the baseline design, instructions were stalled if a data hazard occurred (when 
an instruction earlier in the pipeline depended on a value that was later in the pipeline). In the alternative design, bypassing allowed an 
instruction with a data or control hazard to get the needed value forwarded to its decode stage by the older instruction. We worked 
with instruction set architecture both in the design and testing portion of the lab. We used the TinyRV2 ISA when we used the type of 
instruction and its values to set the control signals, and wrote Tiny RV2 assembly instructions in our tests. We worked with basic 
pipelined processor microarchitecture by designing components in the datapath, setting values in the control unit, and editing the 
parent module which together incorporated a pipeline design. We learned that in a pipelined design, it is important to hold values in 
registers and accurately pass information from stage to stage. In our design, we had to be careful to access the values of the correct 
stage. Understanding how the parent module interfaced between the datapath, the control unit, the memory, and the test source/sink 
was essential for completion of the lab, and taught us design patterns including message interfaces between the processor and memory, 
the control/datapath split, and pipelined control. 

The alternative design is more compelling than the baseline design because it saves on the number of clock cycles needed to 
finish a set of instructions with dependencies. On average for functions with data dependencies, the alternative design is 13% more 
efficient (see table 5). The alternative design accomplishes this with a very modest increase in hardware area and energy requirements. 
With the overall cycles saved for executing programs, the alternative design will actually save energy overall because the extra power 
required for the added components is small. The alternative design accomplishes this by hardware bypassing data values from later 
stages to earlier stages in the pipeline. Due to the fact that dependencies can be common in instructions sequences that perform 
functions such as arithmetic operations (many sequences consist of a series of arithmetic instructions that depend on the previous 
instruction’s output, ex. Fibonacci sequence), the fact that the alternative design saves on clock cycles for dependencies makes it a 
very compelling design. For instance, as shown in the evaluation data below, the number of cycles required for a general computation 
task like performing a convolutional filter on a small image is smaller for the bypassed design than the basic stalling design (7660 vs 
9540 cycles, for a 20% decrease in CPI). A mix of different instructions is used, including arithmetic instructions like add, slli, and 
mul, along with memory instructions and branch instructions. As other examples show, however, the alternative design is only more 
compelling than the baseline design for instruction sequences with control or data dependencies. Otherwise, their performance is the 
same, as demonstrated by the vvadd optimized code below.  

In general, reducing the number of cycles stalled will significantly decrease the CPI and increase the throughput for any 
microarchitecture. There are more approaches to resolving hazards without stalling that were not implemented in this lab. Data 
hazards could be solved by exposing data hazards in ISA, hardware scheduling, and hardware speculation. There are also more 
approaches to resolving control hazards, such as exposing in ISA, software predication, hardware speculation, and software hints. 
Bypassing was implemented in this lab and virtually all modern processors because it reduces stalling while demanding very few 
hardware and control logic additions, an ideal result for all possible computing scenarios. 
 ​Section 2: Baseline Design 

A pipelined microarchitecture is divided into stages with each stage performing specific tasks. To implement stages, registers 
need to be added between stages to send information from one stage to the next on every clock cycle. Compared to a single-cycle 
processor, pipelining reduces the cycle time while still approximately achieving an average of one cycle per instruction. Compared to 
an FSM processor, pipelining has a smaller CPI while approximately achieving a similar cycle time (clock period) to the FSM. 
However, pipelining introduces various hazards that complicate the control logic. The baseline design is a 5-stage pipelined processor 
that utilizes stalling and squashing to handle data and control hazards. The stages in the pipeline are controlled by control signals 
which enable registers, set select signals of muxes, and set other valid/ready signals. Figure 1 displays the datapath for the baseline 
design.  



Though some of the pipelined processor was given to us, we still needed to make changes to the datapath and control unit to 
make this processor fully-functional for all instructions. The datapath needed more muxes and registers to handle more complicated 
instructions. For example, a register needed to be added to hold data being sent to memory, and a mux needed to be added to send the 
PC to the ALU for jump and link instructions. The control unit needed additions to the control signal table for every new instruction 
added and some instructions required new control signals to be defined.  

Stalling and squashing are good approaches to handling hazards in the baseline design, as they are simpler to implement than 
bypassing. This is because bypassing requires passing of data backwards in the pipeline to other stages. Resolutions of hazards that 
went beyond hardware were not implemented as they were not realistic for a lab in which the students design only the hardware of the 
processor. Examples of software solutions include exposing data and control hazards to the ISA, control hazard software predication, 
and control hazard software hints, all of which would require going beyond designing hardware and looking into the role of the 
programmer or compiler to implement. Another approach for resolving data hazards is hardware rescheduling, but this task would also 
be difficult to implement as there would need to be complicated logic and hardware to be able to detect the hazard, determine the order 
in which to execute instructions, and then reorder the instructions going into the pipeline. Therefore, hardware stalling, hardware 
bypassing/forwarding, and hardware speculation were the optimal solutions considered for this lab. Of those solutions, hardware 
speculation is the only one that can handle control hazards, so this was implemented in both the baseline and alternative design. 
Hardware stalling is simpler than bypassing, so stalling makes for a good baseline design, and bypassing makes for a good alternative 
design where both bypasing and some stalling are needed. 

Hardware stalling is the simplest hardware solution because it relies on updating the control signals in our control unit based 
on our datapath’s status signals, therefore integrating well with our datapath/control unit split design. To implement stalling, our 
control unit first checks for data hazards, namely read-after-write data hazards, by looking at the register being read and the address 
being written to in a later stage. If the control unit finds that an instruction is trying to read a register that any instruction later in the 
pipeline is trying to write, it notifies the datapath to stall (by disabling registers). The control unit will detect stall if there is a valid 
instruction in the stage originating the stall and if a hazard was detected. 

Hardware speculation was used for the branching and jumping instructions. We implemented this by writing the appropriate 
squashing signals in the D and M stages for jumps and branches, respectively. These squashes were similar to stall signals in that a 
stage originated a squash if a control hazard was detected in any of the earlier stages. The main difference between squashing and 
stalling is that a stage will stall itself, but an instruction will not squash itself. 
Section 3: Alternative Design  

Our baseline design handles data hazards with stalling, which is not the optimized solution. With hardware stalling, 
throughput is lowered because less instructions are being executed per cycle (if there are data dependencies). The reason for stalling 
was that in some cases - specifically data hazards involving read-after-write (RAW) operations - a later instruction needed a data value 
from an earlier one, and therefore needed to wait for the earlier instruction to finish writing back to a register before it could continue 
in the pipeline. This waiting causes wasted cycles, as the stages of the pipeline are holding onto instructions for multiple cycles instead 
of just one cycle. 

The optimization of the alternative design was to use bypassing instead of stalling whenever possible. Bypassing solves the 
problem of having to wait for a computed value to be written back to the register file before it can be used by a later instruction as it 
allows values to be sent back to the end of the decode (D) stage from any of the later pipeline stages. Eliminating the holding of 
instructions for multiple cycles in a stage significantly increases the throughput of the processor while requiring only a small increase 
in hardware area and power requirements, namely a couple extra multiplexers and some new control logic. The only case in which 
stalling is still necessary for a data hazard is in the case of the load word instruction, since the new data enters the processor only in the 
memory (M) stage, not the execute (X) stage. As a result, the earliest the data can be bypassed back to the D stage is at the end of the 
M stage as opposed to the X stage which is in most arithmetic instructions; thus if the instruction immediately following the lw 
instruction has a dependency on the result of the load, it would need to stall in the D stage for one cycle to wait for the load value to be 
forwarded. This example helps demonstrate why bypassing was implemented in the alternative design, after stalling was implemented 
in the baseline design, since this example requires both bypassing and stalling. 

To add the bypassing functionality, we once again structured our approach around the control/datapath split design principle. 
Since the additions to the datapath were fairly simple, we chose to implement them first. As mentioned, three bypass paths were 
implemented: the end of X to the end of D, the end of M to the end of D, and the beginning of W to the end of D. The sources of these 
bypass paths were chosen specifically to take the value from just before the staging registers in the case of X and M, and just before 
writeback for W. This is because the logic can be viewed as combinational within the X and M stages (though in practice, memory 
accesses and the multiplier are not actually combinational) and we need to bypass the resulting data of each stage. For the bypass from 
W we need to take the value from before writeback since writeback is the time-consuming part of W. Two 4-input bypass multiplexers 
were added in the D stage before the operand select muxes. The bypass paths from X, M, and W, along with the input from the register 



file, make up the inputs to each mux. The outputs of the bypass muxes connect to the inputs of the original operand select muxes as 
before.  

The new control logic is slightly more involved as it requires not only the bypass logic to be implemented but also changes to 
the stalling logic. We approached this problem by first categorizing all possible hazards that could occur in our microarchitecture. For 
the TinyRV2 instruction set, only RAW and control hazards could occur (structural and WAW/WAR hazards do not arise in this 
microarchitecture). Moreover, since control hazards can only be resolved through stalling or hardware speculation, our bypass paths 
would not affect how we were already handling control hazards.Bypassing values meant we would need to change the stalling logic in 
the D and X stages. Originating stall (ostall) hazards for load dependencies were created for both source operands, which originate 
stalls if an instruction depends on a load instruction. The alternative processor then only stalls if there is a load use dependency. We 
also added bypassing signals to check whether any of the source operands of the instruction in the D stage are the same as a write 
address of an instruction in the X, M, or W stages; if so, we allow the bypass muxes to pass the corresponding bypass value through. 
The only exception to this is if a lw instruction is in the X stage, in which case the bypass will have to occur in the M stage after 
stalling for one cycle. Since bypassing handles all RAW data hazards that were handled in the baseline design through stalling, we 
simply deleted the extra ostall signals (that were in the baseline) in the alternative design.  

Bypassing was chosen as the method of dealing with hazards for the alternative design because it is an improved design over 
stalling due to the amount of cycles it saves when there are dependencies between instructions. Unlike stalling, bypassing allows 
values to be forwarded from the X, M, or W stage to the instruction that requires the necessary value(s). This saves on clock cycles 
because the instruction does not need to stall until the previous instructions it depends on are finished. For example, Table 1 displays a 
simple example set of instructions that shows how bypassing saves cycles as opposed to stalling. As can be seen in the table, the 
processor with stalling would take 9 cycles to execute the assembly code whereas the processor with bypassing would only take 3 
cycles to execute (both calculations exclude warm-up time of pipeline). Bypassing reduced the number clock cycles by 3 times the 
number of stalling to execute the same set of instructions.  
Section 4: Testing Strategy 

We used incremental and test driven methodologies for completing both the baseline and the alternative design. That is, we 
verified our implementation of each instruction before continuing to the next one by running the provided basic test and a few simple 
directed value tests we write during the development process. To ensure that the tests themselves were valid, we check their 
correctness in the functional-level representation since the functional level does not require a microarchitecture to compute the results 
(so it is guaranteed to be correct). After fully implementing the datapath and control modules, we comprehensively tested each 
instruction by adding directed test cases for data hazard resolution and data edge cases. We also added random value testing as well as 
random delay testing to ensure that the processor could handle all cases and the uncertainty of real-world computation. We combined 
these directed and random tests into unit test suites for each instruction that not only verified the correctness of the processor in 
isolated tests but also in sequences of instructions. Throughout the testing process, we use the line trace outputs of the unit tests to 
locate errors and debug faulty connections and control logic in our modules. 

Directed testing was essential to ensuring that our instructions would respond appropriately to read-after-write (RAW) data 
dependency hazards. Specifically, we added Python assembly-generation test functions for destination-dependent and 
source-dependent hazards as well as when the source and destination are the same. To make sure that the microarchitecture would 
either stall or bypass to handle these cases, we varied the number of nops between consecutive instructions from 5 to 0 to test whether, 
for example, an add instruction in the baseline design would stall until both source registers have been written by the preceding csrr 
instruction. We also wrote directed value tests to check that the implementation correctly handled edge cases, especially those 
instructions in which signed/unsigned representations matter. In all of the register-register and register-immediate instructions, for 
example, we add test cases for small positive, large positive, small negative, large negative, and zero data values for both source 
operands. Likewise, for memory instructions we test these edge cases for both the data value being stored/loaded and the memory 
address in which to do so. For the jump and branch tests, our directed tests check that the PC is loaded with the correct value by 
keeping track of a register in which bits are set by addi instructions at various labeled points; some of these points should be skipped if 
the control flow is correct. These tests allowed us to verify that the jump or branch instruction performs correctly when we add new 
labels the processor should jump to. Within those tests, we verify branching/jumping to both forward and backward addresses 
correctly. The jump and branch test cases also test that the squash signals work correctly by checking that the right set of instructions 
are executed after a jump/branch instruction.  

We also added random testing to ensure not only that the implementation is correct across general use cases but also to 
simulate what the processor might see in a real computing scenario. For instance, random testing is often useful for covering edge 
cases or other special cases we may have forgotten to check in our directed testing. Moreover, random testing sometimes exposes 
errors in our microarchitectural implementation, such as when we forgot to restrict ALU shift operations to the 5 least-significant bits 
in the second source operand. We implemented random value testing using Python’s built-in pseudorandom number generation 



functions for the operand values and checking the output of the processor against the expected value that we determine as a function of 
the inputs. In the case of branch and jump instructions, we use random testing to insert a variable number of nops between control 
flow instructions to test whether the branch or jump logic is affected. To inject even more uncertainty into the tests, we also add 
random delay testing. These tests simulate real-world delays in hardware, such as when requesting data from source or memory. Since 
data memory accesses, for example, can take an unpredictable amount of time to complete due to the possibility of cache misses, 
random delay tests ensure that our processor will simply stall to wait for data to arrive. 
Finally, we combine individual directed tests and random tests into unit tests to take advantage of the modularity of the processor. 
Since the processor functionality can be viewed as a hierarchy of instruction classes and operation types, the majority of our unit tests 
execute at the level of groups of instructions of the same class (i.e. register-register, register-immediate, memory, etc.). These unit 
tests verify that we are not missing any major components in our datapath since all the instructions in a class of instructions would fail 
if an essential datapath component was missing. Moreover, unit tests verify the implementation of more complicated instructions, such 
as branch instructions that depend on the correctness of the fundamental instructions like the addi instruction. They also give us the 
freedom to ascend another hierarchical level and test the processor as a whole, combining instructions from multiple classes and 
varying or eliminating separating nops to ensure that data hazards are still handled correctly.  
Section 5: Evaluation 

Our alternative design has a higher cycle time because of a longer critical path due to bypassing. In a pipelined processor, the 
cycle time is determined by the slowest stage in the pipeline, and how much time that stage requires is determined by looking at the 
longest datapath from one register to another. In our alternative design, we added bypassing which created a longer critical path. An 
example of a long bypassing critical path is if there is a RAW data hazard in the X and D stage. This is a longer critical path because 
the result of our execution stage needs to be forwarded to the start of the decode stage, and therefore the cycle time is based on the 
time for the X stage instruction to finish and then the decode instruction to finish. This is longer than our baseline design where values 
are only dependent on data from its own stage.  

Though our cycle time is slightly longer, this tradeoff is well worth it for the alternative design. This is because the energy 
required for the alternative design will be much less than the baseline design. In the baseline design, a lot of energy is wasted on 
stalled pipeline stages where instructions take longer to execute and resources within the pipeline are wasted waiting to resolve a 
hazard. In the alternative design, the only stall occurs for a load word instruction, and all other RAW data hazards use bypassing, 
which helps prevent wasted time due to stalling. In preventing stalling, we increase the number of instructions able to execute per 
cycle. Increasing CPI so significantly is well worth the small increase in cycle time, as our execution time will be less for the case of 
high CPI and slightly higher cycle time. 

Our area will increase slightly for the alternative design because more hardware is required for bypassing. Specifically, wires 
and muxes are required to send the data back to an early stage and then choose between values coming in from the register file or from 
later stages. Note, the addition of 2 muxes and some more wired connections within our datapath and from the control unit to the 
datapath is not that much more hardware than baseline design, so the tradeoff of adding more area for our design is well worth it. 

Our evaluation of the provided benchmarks demonstrates when the alternative design has a higher CPI than our baseline 
design. As discussed previously, the alternative design will have a higher CPI when there are RAW data dependencies. The first 
benchmark, an unoptimized vector-vector add function, demonstrates this fact. In Table 3: Evaluation Data, it is evident that the 
baseline design has a CPI of 9.33 while the alternative design has a CPI of 8.67. The reason for this is due to the data dependencies in 
the assembly code for this benchmark (see Code Snippet 1). These dependencies are also present for bsearch and mfilt (see code 
snippets 4 and 5) which our evaluation determines have lower CPI for the alternative design. There are no RAW data dependencies in 
the optimized version of vector-vector add, and as a result the CPI for both designs is the same. Though there are RAW dependencies 
in the mult benchmark, our design stalls for multiplication in a unique way which does not involve holding the operand values in 
registers (See Figures 1 and 2 the Baseline/Alternative Datapaths and notice that there are no registers for multiplication unit). Our 
multiplication unit waits until the operands are valid, and then will immediately begin executing. Therefore the entire stage will not 
have to be stalled. The multiplication unit waits long enough for the operand(s) to be written back and then finishes execution stage. 
Therefore, with these specific assembly instructions for complex multiplication, there is no need to stall/bypass as the dependencies 
will be resolved within our datapath design. 

Also included in our evaluation of memory latency on CPI. The relationship between memory latency and CPI appears to be 
linear in both graph 1 and graph 2, and the type of design (baseline or alternative) does not matter when considering the type of 
relationship between memory latency and CPI. This makes sense considering that a longer memory latency will increase cycle time, 
not CPI. However, as the memory latency increased, the difference in CPI between the baseline design and the alternative design 
decreased. 
 
 



 
 
Section 6: Additional Diagrams 
 
Figure 1: Baseline Datapath 
 

 
Figure 2: Alternative Datapath 

 
 
Table 1: Example Assembly Code 



 
Table 2: Role and Task Table 
 

 
 
 

 

 sh997 byx2 yo82 

Tasks Baseline Design:  
-Made changes to datapath 
to include new muxes and 
registers needed 
-Added lines in control 
signal table for branching 
and jumping 
-Added logic for jump 
instruction squashing 
-Added to ALU for less than 
and unsigned less than 
condition indicators 
Alternative Design: 
-Designed new datapath for 
alternative design, 
referencing lab material and 
lecture notes for optimal 
solution 
Testing: 
Wrote tests for branching 
and jumping, as well as 
some additional tests to test 
stalling, squashing and 
bypassing 
Report: 

Baseline Design: 
-Implemented parts of 
control signal table 
-Added new operations to 
ALU module 
-Helped with stalling and 
squashing, PC redirect 
signals 
Alternative Design: 
-Implemented datapath 
changes including bypass 
connections and muxes in 
the dpath module and parent 
module 
-Modified stalling signals to 
account for new bypassing 
functionality 
Testing: 
-Wrote test cases for 
register-immediate 
instructions, helped with 
datapath component testing 
Report: 
-Wrote parts of testing 
section and alternative 

Baseline Design: 
-Created missing muxes and 
registers as needed 
-Added to control table in 
control unit 
-Helped with signals for 
stalling and squashing 
Alternative Design: 
-Created and changed 
bypass signals 
-Implemented datapath 
changes 
Testing:  
-Wrote test cases for all 
register to register 
instructions, memory 
instructions, created the 
store word test template, and 
worked on the datapath 
components test cases 
Report: 
-Introduction, parts of 
alternative design and 
testing sections 
 



Wrote large parts of 
Baseline and Alternative 
design sections, as well as 
the evaluation section 
 

design section 
 

 
Table 3: Evaluation Data 

 

Benchmarks Baseline Alternative 

vvadd-unopt : Element-wise 
 vector-vector add (unoptimized) 

 [ passed ]: vvadd-unopt 
 

 num_cycles = 8455 
 num_insts  = 906 
 CPI        = 9.33 

 [ passed ]: vvadd-unopt 
 

 num_cycles = 7855 
 num_insts  = 906 
 CPI = 8.67 

 vvadd-opt : Element-wise  
vector-vector add (optimized) 

[ passed ]: vvadd-opt 
 

 num_cycles = 4280 
 num_insts  = 531 
 CPI = 8.06 

 [ passed ]: vvadd-opt 
 

 num_cycles = 4280 
 num_insts  = 531 
 CPI = 8.06 

cmult : Element-wise  
complex multiplication 

[ passed ]: cmult 
 

 num_cycles = 9066 
 num_insts  = 1706 

 CPI        = 5.31 

 [ passed ]: cmult 
 

 num_cycles = 9066 
 num_insts  = 1706 

 CPI = 5.31 

bsearch : Binary search in a  
linear array of key/value pairs 

 

 [ passed ]: bsearch 
 

 num_cycles = 11845 
 num_insts  = 1526 

 CPI        = 7.76 

 [ passed ]: bsearch 
 

 num_cycles = 10195 
 num_insts  = 1526 

 CPI = 6.68 

mfilt : Masked convolution  
on a small image 

 [ passed ]: mfilt 
 

 num_cycles = 9540 
 num_insts  = 1349 

 CPI = 7.07 

 [ passed ]: mfilt 
 

 num_cycles = 7660 
 num_insts  = 1349 

 CPI = 5.68 

 
Table 4: Effect of Memory Latency 
 

mem latency Base CPI Alt CPI Percent difference 

0 9.33 8.67 7.073955 

1 9.99 9.33 6.606607 

2 10.33 9.66 6.485963 

3 10.99 10.33 6.00546 

4 11.76 11.11 5.527211 

5 13.77 13.33 3.195352 



6 14.22 13.78 3.094233 

7 15.43 14.99 2.851588 

8 15.55 15.11 2.829582 

9 16.46 16.02 2.673147 

10 17.22 16.78 2.555168 

15 21.23 21 1.083373 

20 25.95 25.51 1.695568 

 
Table 5: Difference in CPI for Alternative and Baseline Design for Cases of Data Dependencies 
 

CPI Base CPI Alt Percent 
Difference 

9.33 8.67 7.073955 

7.76 6.68 13.91753 

7.07 5.68 19.66054 

 average = 13.55067 

 
 
 
Graph 1: Memory Latency Effect on Baseline Design CPI 

 
 
Graph 2: Memory Latency Effect on Alternative Design CPI 



 
 
Code Snippet 1: vvadd unoptimized (RAW dependencies highlighted) 
loop: 

           lw    ​x6​, 0(x2) 
           lw    ​x7​, 0(x3) 
           add   ​x8​, ​x6​, ​x7 
           sw    ​x8​, 0(x4) 
           addi  x2, x2, 4 

           addi  x3, x3, 4 

           addi  x4, x4, 4 

           addi  x5, x5, -1 

           bne   x5, x0, loop 

 

Code Snippet 2: vvadd optimized (with some RAW dependencies highlighted) 
loop: 

    lw    ​x6​,   0(x2) 
    lw    x7,   4(x2) 

    lw    x8,   8(x2) 

    lw    x9,  12(x2) 

    lw    ​x10​,  0(x3) 
    lw    x11,  4(x3) 

    lw    x12,  8(x3) 

    lw    x13, 12(x3) 

    add   ​x6​, ​x6​, ​x10 
    add   x7, x7, x11 

    add   x8, x8, x12 

    add   x9, x9, x13 

    sw    ​x6​,   0(x4) 
    sw    x7,   4(x4) 

    sw    x8,   8(x4) 

    sw    x9,  12(x4) 

    addi  x5, x5, -4 

    addi  x2, x2, 16 

    addi  x3, x3, 16 

    addi  x4, x4, 16 

    bne   x5, x0, loop 



 

Code Snippet 3: cmult (with some RAW dependencies highlighted) 
loop: 

    lw   ​ x6​, 0(x2)    # src0_real 
    lw    ​x8​, 0(x3)    # src1_real 
    lw    ​x7​, 4(x2)    # src0_imag 
    lw    ​x9​, 4(x3)    # src1_imag 
    mul   x10, ​x6​, ​x8 ​ # real * real 
    mul   x11, ​x7​, ​x9 ​ # imag * imag 
    mul   ​x12​, ​x7​, x8  # imag * real 
    mul   ​x13​, x6, x9  # real * imag 
    sub   x14, x10,x11 # dest_real 

    add   x15, ​x12​,​x13​ # dest_imag 
    addi  x5, x5, 2 

    addi  x2, x2, 8 

    addi  x3, x3, 8 

    sw    x14, 0(x4) 

    sw    x15, 4(x4) 

    addi  x4, x4, 8 

    bne   x5, x1, loop 

 

Code Snippet 4: bsearch (with some RAW dependencies highlighted) 
loop: 

    one: 

    slli  ​x24​, x11, 2    # idx_mid in pointer form 
    add   ​x16​, x4, ​x24 ​  # idx_mid pointer in dict_keys 
    lw    ​x17​, 0(​x16​)    # midkey = dict_keys[idx_mid] 
 

    bne   x9, ​x17​, two   #  if ( key == midkey ) goto two: 
 

    # if block starts 

    add   ​x16​, x5, x24   # idx_mid pointer in dict_values 
    lw    ​x18​, 0(​x16​)    # dict_values[idx_mid] 
    add   ​x15​, x2, x25   # i pointer in srch_values 
    sw    ​x18​, 0(​x15​)    # srch_values[i] = dict_values[idx_mid] 
    addi  x13, x0, 1     # done = true 

    # if block ends 

 

Code Snippet 4: mfilt (with some RAW dependencies highlighted) 
    mul   ​x11​, x8, x9   # ridx*ncols 
    add   ​x11​, ​x11​, x10 # ridx*ncols + cidx 
    slli  x11, ​x11​, 2   # ridx*ncols + cidx (pointer) 
    add   ​x12​, x5, ​x11​  # ridx*ncols + cidx (pointer) for mask 
    lw    ​x12​, 0(​x12​)   # mask[ridx*ncols + cidx] 
 

    # If block 

    # if ( !mask[ridx*ncols + cidx] ) goto two: 

    beq   ​x12​, x0, two 
 

    add   ​x12​, x6, x11  # ridx*ncols + cidx (pointer) for src 
    lw   ​ x13​, 0(​x12​)   # src[ridx*ncols + cidx] 
    mul   ​x13​, ​x13​, x24 # src[ridx*ncols + cidx] * coeff0 
    add   x23, ​x13​, x0  # out = src[ridx*ncols + cidx] * coeff0 


