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Section 1: Introduction 
The purpose of this lab was to gain experience with topics taught in class such as software/hardware co-design, programming 

single- and multi-threaded C programs, and computer architecture evaluation methodologies based on architecture-level statistics 
through designing single and multicore processors. The lab incorporates many important themes in computer architecture like memory 
networks and incremental design. Unique features of this lab included its emphasis on structural composition to incrementally create a 
relatively complex system based on thoroughly unit-tested subsystems, software/hardware co-design such that students must 
understand the software application, hardware/software interface, and hardware microarchitecture. These computer architecture 
themes are relevant not only to this class, but to how computer architecture, design, and verification are implemented in industry. 

In the baseline design, we were given a single-core processor with its own instruction and data cache. In the alternative 
design, we designed a multi-core processor with private instruction caches and a shared, banked data cache. We also wrote both a 
single-threaded and multithreaded sorting microbenchmark in C, explored the compiled and assembled binary, and ran these programs 
on the two designs. The evaluation of the two designs (discussed more thoroughly in section 5) revealed that the alternative design 
saves significantly on CPI (cycles per instruction) for the multi-threaded programs. For each of the evaluation tests, the alternative had 
a smaller CPI than the baseline, for example the multicore had a CPI of 1.51 for the multi-threaded vvadd test whereas the single core 
had a CPI of 5.32 for the same test. This result is mirrored by all the other multi-threaded evaluations that were conducted, 
demonstrating how the alternative design can exploit thread-level parallelism to increase throughput and lower the CPI.  

The alternative design is more compelling than the baseline design due to its ability to handle more than one thread 
simultaneously. Multiple cores means that each core can handle a separate stream of data, which leads to significant performance 
increases for a system running multiple concurrent applications. Multicore processors exploit thread-level parallelism by allocating 
different threads within a single program to the different cores within the chip. This ideally will fully parallelize an application on P 
processors and will result in about P× speedup. However, multicore designs also have their drawbacks. First of all, it is not possible to 
fully parallelize most applications, and serial portions of the code can quickly dominate the execution time. Implementing multiple 
cores also leads to increases in hardware area and energy requirements. However, the performance increases that they provide make 
them well-worth the tradeoff, as previously discussed with the CPI. With regards to energy use, although the multicore processor 
requires more energy overall due to its running of multiple threads and additional hardware, it could be argued that it actually saves 
energy because it allocates less energy for an individual, single thread in the end than a single-core processor does for that same 
thread. 

 In general, increasing the number of cores will significantly increase performance in systems running multiple concurrent 
threads. However, this is not always the case and is often unnecessary. For the most part, a dual or quad-core processor should be 
enough to support a user’s needs for a basic computer. This is due to software limitations. With increases in cores, software 
adaptations are necessary to support the addition of more cores. Therefore, specialized software is usually needed for very high-core 
processors which is why high-core processors are usually machines that perform very complex tasks.  

 
 ​Section 2: Baseline Design 

The baseline design, shown in Figure 1, is a single core, pipelined processor with full bypassing composed with an 
instruction cache and an unbanked data cache. The design does not use any networks because there are only a few modules to connect 
together, and all memory data must flow through a single processor. It is also relatively simple to handle the val/rdy interfaces 
between the instruction cache and processor and data cache and processor. The baseline design uses the alternative design from lab 2 
in order to reduce stalls through bypassing. Bypassing significantly increases the throughput of the processor while requiring only a 
small increase in hardware area and power requirements. It also uses the alternative design from lab 3 for the instruction and data 
caches, which has two-way set-associativity to better exploit temporal locality. The number of banks is set to 0 because the cache does 
not have to decide which core to send data to - there is only one core in the baseline. The cache miss/access statistics ports and 
processor statistics ports are connected to outputs of the lab 5 module, and the performance statistics are dumped during the program 
execution. This design is a good baseline design because all the instructions must execute on only a single core, meaning that it will be 
very easy to compare and quantify the performance improvements of parallelization after the addition of more cores. 

We implemented a scalar quicksort algorithm for sorting an array of integers. Quicksort chooses any element in the array to 
serve as the pivot, and then partitions the remaining elements of the array on either side of the pivot based on whether they are smaller 
or larger than the pivot value (smaller on left, larger on right). It then recursively executes quicksort on the arrays to either side of the 
pivot until all elements in the array have been sorted. While any element in the array can be the pivot, usually it is either the first 
element, the last element, or the middle element. For simplicity, we choose the last element in the array as the pivot position every 
time we call the quicksort function. We use the quicksort algorithm because it is very efficient on average with O(n log n) 



performance, although in the worst case it can take O(n^2) comparisons. Moreover, it is space efficient as it can be sorted in-place. 
Quicksort is a good baseline because it has good cache spatial locality compared to other sorting algorithms, namely merge sort which 
divides the array to sort it. We reuse quicksort in our merge sort algorithm in alternative design to sort the array portions. Therefore, 
quicksort makes a good baseline design because it can be reused in the merge sort, and we can more easily evaluate the benefits and 
drawbacks that come from dividing the array among multiple cores. 

This design (and the alternative as well) demonstrates hierarchy due to its memory structure. There exists a memory 
hierarchy from the caches, main memory, and other memory levels that might exist. A hierarchy means there are different levels of 
memory in which going up levels means increased speed and bandwidth and going down levels means increased capacity. The cache 
is at a higher level than the main memory and it takes less time to access data within it while having a lower capacity then memory 
levels below it. The main memory is at a lower level than the caches and it has the ability to hold much more data than a cache but it 
takes much longer to access its data than the levels above it. The design also demonstrates modularity because the different parts of the 
single core processor were put together using the different processor and cache modules. Modularity refers to a system composed of 
separate components that can be connected together, which is exactly how this system was designed. Since we did not have to worry 
about the implementation of the processor or caches (for this lab at least), the design is also an example of encapsulation, meaning the 
modules are self-governing. We could easily swap our implementation out for a different implementation if so desired because only 
the input and output connections must remain the same.  
 
Section 3: Alternative Design  

The alternative design is a quad-core processor with four instruction caches and a banked datacache system, shown in detail 
in Figure 7 and at a higher level in Figure 2. Networks handle the interface between the caches and main memory. The multicore 
datacache contains four data cache banks, a cachenet, and a memnet where the cachenet connects the caches and handles the banking 
of the caches and the memnet connects the banked caches to the main memory. We were responsible for connecting this multicore 
datacache, the instruction caches, the memnet which connects to the instruction caches, and the four processors. 

For this alternative design, we chose to use our alternative processor design from lab 2 for the processors and also our 
alternative cache design from lab 3 for the instruction caches. We chose to do this because the alternative design for the processor over 
the baseline design because the baseline only has the capability of utilizing stalling to deal with data hazards whereas the alternative 
has the ability to use bypassing on top of stalling. We also chose to use the alternative design for the instruction caches over the 
baseline. This is because the baseline is a direct-mapped cache whereas the alternative is a two-way set-associative cache. Compared 
to the direct-mapped cache, the set-associative cache results in a larger hit rate since for any given index there are two different ways 
where the tag can be stored. A larger hit rate means that memory is accessed less, which saves on clock cycles.  

The alternative design’s CacheNet, shown in Figure 3, handles the interface between the four processors and the four data 
cache banks. This network has an Upstream (processor) and Downstream (main memory) message adapter which convert processor 
and main memory messages respectively to network messages. The Upstream adapter extracts the bank bits, seen in Figure 4, from the 
processor and includes them in the destination header. The MemNet, shown in Figure 5, works in more or less the same way as the 
CacheNet, but the Upstream adapter always inserts a 0 into the destination field. The MemNet is used to refill the instruction caches 
and data cache banks. Finally, the McoreDataCache module, seen in Figure 6, combines the CacheNet, MemNet, and four cache banks 
to create the complete shared, 4-banked data cache system. We instantiate the McoreDataCache along with four processors, four 
instruction caches, and an additional MemNet for the instruction caches in the MultiCore system, simulating a realistic processor and 
cache system. This incremental development approach is a good example of modularity and hierarchy because the components are 
grouped into self-governing modules which build upon each other to form the final MultiCore system at the top of the hierarchy 
structure. The design also lends itself to the principle of extensibility since it would be easy to improve a subcomponent and simply 
swap it into the existing design. For instance, if we were to change the network topology, we could simply develop new CacheNet or 
MemNet modules and replace the current modules. 

Additionally, we wrote a hybrid quicksort/mergesort (parallel sort) algorithm for sorting an array of integers. Our mergesort 
essentially takes two sorted arrays and incrementally combines individual elements from the two arrays into a larger, sorted array. The 
mergesort function took in an argument vector pointer. With this argument, we could determine the destination and source array 
pointers as well as the “begin” and “end” indexes of the array needing to be sorted. The size of the array could be determined by 
subtracting the “begin” index from the “end” index. Our mergesort algorithm breaks up the array into two, one starting at the “begin” 
index and ending at the middle index and the other starting at the middle index and ending at the “end” index. The index of the middle 
was calculated by taking half the size of the array and adding it to the begin index. The two sub-arrays have been sorted by the 
quicksort algorithm. Our mergesort algorithm will then execute a for-loop the size of the final destination array and fill each element. 
This is done by comparing the elements in the two sorted sub-arrays. At each iteration of the for-loop, the algorithm checks to see 
which sub-array has the smallest number at the “head” index and that element is placed into the next index of the destination array. 



The “head” index for a sub-array starts at its first element and is incremented each time an element from that subarray is put into the 
final destination array. Mergesort is a good alternative because it utilizes a divide-and-conquer method and its worst complexity is 
O(n*log(n)). In fact, it is most optimized for combining already-sorted arrays, which is why we use it in tandem with our scalar 
quicksort algorithm.  

A multi-core (4-core) processor is a good alternative design because it has the ability to run multiple threads simultaneously, 
but we can begin to see the drawbacks of adding more cores. As discussed later in our evaluation, there are costs to adding more cores, 
hence why we don’t use 100 cores. This comparison is similar to why we did not use 100 pipeline stages in our pipeline processor in 
lab 2. Though more work can be done in parallel, it becomes harder to divide the work evenly and the overhead becomes higher as 
well. There is also often no need for so much work to be done in parallel, as not many programs have such characteristics.  

All in all, a multicore processor is an optimization over the single core processor in the baseline design because it provides a 
larger bandwidth and an increased thread-level parallelism that increases processor performance significantly. Though there is more 
complexity in the multithreaded mergesort than the single threaded quicksort, resulting in more instructions to be processed, the 
parallelization of the multi-core processor optimizes the performance of sorting the array over the single-core single threaded sort.  
 
Section 4: Testing 

In order to test our baseline and alternative designs, we used directed and random testing. Directed testing was important so 
that we could set up certain situations, predict the behavior, and observe the results in order to make sure that the functioning was 
correct. Random testing was important because it could produce situations that we did not even think to try in order to test the 
processor designs. For the random testing, we utilized both random value and random delay testing to cover all the aspects of the 
processors. We go more into detail about these different testing strategies in the following paragraphs. 

Directed testing was essential to ensuring that the processors would respond the way we expected them to respond. Tests for 
the CacheNet, MemNet, and McoreDataCache are provided to us. These tests use the test sources to load messages into the network 
and verify that the network properly processes these messages. For the CacheNet and McoreDataCache modules, tests from Lab 3 are 
used since these modules accept cache requests. Instead of a single source and sink, however, there are now four source and sink pairs.  
For the entire MultiCore composition, we are provided with an incremental testing strategy. First, the directed assembly sequences are 
used to verify that arithmetic operations, multiplication operations, memory operations, jumps, branches, etc. are working properly. 
These tests choose registers to load test values into, perform operations on them, and then check for correctness in the test sink. They 
also allow us to force data dependencies to occur in order to test proper hazard management. These tests are finally combined into 
more comprehensive unit test suites that combine several instruction types into a sequence that simulates more realistic computation. 
At this point, random delay and random value testing are also performed, as explained in the next section. 

Random delay tests were used in lab in order to ensure that the ready and valid signals between all the different modules were 
working correctly. The ready and valid signals are essential in the functioning of these processors because they control what data 
flows through the system and when that data flows through the system. If these signals are incorrect, the wrong data will be delivered 
to the module waiting on a specific piece of data. These random delays specify arbitrary stalls into the system to make sure that data is 
passed around as soon as it is available, it should wait until the valid/ready bits are high between the modules that it is passing 
through. Random value testing was also implemented to ensure not only that the design is correct across general use cases but also to 
simulate what the processor might see in a real computing scenario. For instance, random testing is often useful for covering edge 
cases or other special cases we may not have thoroughly checked in our directed testing. Moreover, random testing sometimes exposes 
errors in our microarchitectural implementation, such as when we forgot to ensure the reliability of our multiplier from lab 2. Random 
value testing was implemented using Python’s built-in pseudorandom number generation functions for the operand values and 
checking the output of the processor against the expected value that we determine as a function of the inputs. 

Part of our incremental testing strategy was to thoroughly test the hardware and software portions of the lab separately before 
combining them. We tested the correctness of our sorting algorithms by creating different arrays that test various edge cases. Since 
there are four cores, it is important to test the behavior when the number of array elements is not a multiple of four. We simply created 
arrays of size 127, 126, and 125 to test all the possible remainders when dividing the size by 4. These tests ensure that we handle the 
array indexing correctly when dividing up the work among the four cores. We also added arrays with all elements of equal value, as 
well as arrays with fewer than 4 elements in order to test corner cases. The non-multiples-of-four sorting tests were implemented to 
allow us to confirm the correctness of our multi-core processor’s allocation of work for the different cores even when the work is not 
able to be split up evenly by the four cores.  

After all these tests, we can safely conclude that our design is functionally correct because we carefully tested each aspect of 
the system with both random and controlled tests. The random value and delay tests ensure that our system functions correctly for 
cases we might not have considered and the directed tests allowed us to confirm that the designs behave the way we expected.  

 



Section 5: Evaluation 
All of the multi-threaded benchmarks performed better on the multicore system than the corresponding single-threaded 

benchmarks on the single-core system. However, they do not result in the theoretical 4X speedup over the single core; in most cases, 
they resulted in a speedup of just over 3X (see CPI in Table 0). This fact results from a number of reasons. First, the code that runs on 
the multicore system tends to require significantly more assembly instructions than the code for the single-core system due to the extra 
overhead of dividing up arrays and spawning work for the worker cores. Second, the multicore system tends to have a greater number 
of instruction cache misses than the single core, possibly due to a less efficient use of spatial locality. As a result, the four individual 
cores have more than a fourth of the instructions of the single core and have a higher CPI than the single core (compare core0 
instructions and CPI to single core in Table 0). However, when these cores are combined, the overall CPI becomes lower due to 
executing the four cores in parallel. Also, the theoretical 4X speedup is not generally attainable because full parallelization is 
impossible for most programs and serial portions of code can dominate execution time.  

The single-threaded benchmarks perform very poorly on the multicore system due to the fact that there was no thread-level 
parallelism to take advantage of. For example, the multicore system performed worse on the quicksort benchmark than the single core 
system. This is because the work was not divided up between the cores, meaning the optimization that the multicore system provides 
was not useful for the single-threaded benchmarks. Though our multicore system seems to have a high CPI, that is only because the 
calculations are done on the basis that the work is divided among the four cores, not repeated on them. It might also be the case that 
the multicore system must stall or squash more instructions than the single core due to the data hazard of having multiple cores 
executing the same instructions. Not only is it unnecessary to execute an instruction four separate times, it is also detrimental to the 
performance. 

Sorting was chosen as an evaluation method because it is work that can be split up between the different cores and 
re-combined to come to the final answer. The mergesort algorithm essentially breaks up the array into the smallest sub-arrays and 
starts sorting from there, meaning these sub-arrays can be sorted by the different cores and then re-combined by one of them to 
produce the final sorted array. This allows us to easily evaluate the difference between running a sorting algorithm on a single core as 
opposed to multiple cores and compare the results, which is why we used sorting as an evaluation method.  

The different benchmarks provided, which all have improved performance in the multithreaded versions, demonstrate that 
breaking up the single thread into multiple threads on multiple cores will have generally similar effects. The benchmarks perform 
operations on arrays, which have high spatial locality. The spatial locality of the benchmarks takes advantage of our banked cache 
system such that the different processor cores all have access to the same data. This fact, along with the benchmarks’ ability to be 
divided among multiple cores, make them good benchmarks for evaluation. The benchmarks did have some small differences. For 
example, bsearch did not require as many extra instructions to be divided up among the cores, but that is due to the nature of this being 
a search algorithm which lends itself well to multithreading. Bsearch also had a higher datacache hit rate as compared to the single 
core version. The sort benchmark on the other hand, required much more extra instructions than the single core to run. This is because 
the sorting benchmark requires more communication between the cores. However, the result is still similar in that the multicore did 
much better in terms of CPI than the single core.  

The multicore system has a significant increase in area and energy requirements due to the quadrupling of processors and 
caches in addition to the added networks. The overall reduction in computational time offsets this increase somewhat, but not 
completely. The multicore system is ideal if performance is the main concern and energy and area requirements are secondary, such as 
in desktop computers and industrial applications. On the other hand, in certain systems like embedded devices and mobile devices 
where energy and size are critical requirements, it may not be worth it to use a multicore system. 

All in all, we can conclude that the multi-core processor significantly increases the performance of programs with a 
multi-threaded nature whereas it provides little to no optimization for single-threaded programs. This is obvious because a multi-core 
processor allocates different threads into the different cores so that they can be executed simultaneously and increase the throughput of 
the program. Additionally, an important conclusion is that performance does not scale linearly with number of cores, as demonstrated 
by the less than 4X speedup. In realistic systems, various overheads that come with increasing thread-level parallelism result in 
diminishing returns as the number of cores increases, which explains why modern systems do not use hundreds or thousands of cores. 
Besides the obvious energy and area increases that this would entail, realistic multicore systems must manage coherence, consistency, 
and synchronization. The marginal performance benefits are not worth the astronomical costs of blindly adding more cores. 
 
 
 
 
 
 



Section 6: Additional Diagrams 





 
 
Table 0: Comparison of single-threaded code on single-core processor to multi-threaded code on multi-core processor 
 

 Sort  VVadd  Bsearch  Cmult  Mfilt  



Metric Score Mcore Score Mcore Score Mcore Score Mcore Score Mcore 
num cycles 56019 38153 4311 2260 10341 3831 12223 4915 25989 9856 
total cpi 5.02 1.37 5.32 1.51 4.91 1.34 6.08 1.81 4.73 1.41 
total instructions 11158 27790 811 1492 2106 2855 2011 2711 5493 7006 
total icache miss rate 0.0013 0.0302 0.0055 0.0334 0.0063 0.0292 0.0033 0.0223 0.0039 0.0176 
total dcache miss rate 0.0618 0.1025 0.2533 0.2181 0.6234 0.3369 0.151 0.1559 0.2454 0.2364 

core0 commit inst  6282  341  673  641  1673 

cor0 cpi  6.07  6.63  5.69  7.67  5.89 
 
 
Table 1: Ubmark Quicksort 
 

Ubmark-quicksort   
ISA Score Mcore 
score In stats_en region: In stats_en region: 

In stats_en region:   
total_committed_inst = 11158 num_cycles = 56019 num_cycles = 80025 

 total_committed_inst = 11158 total_committed_inst = 44489 
mcore total_cpi = 5.02 total_cpi = 1.80 

In stats_en region:   
total_committed_inst = 44632 total_icache_miss = 16 total_icache_miss = 61 

 total_icache_access = 12780 total_icache_access = 50982 
core0_committed_inst = 11158 total_icache_miss_rate = 0.0013 total_icache_miss_rate = 0.0012 

core1_committed_inst = 11158   
core2_committed_inst = 11158 total_dcache_miss = 225 total_dcache_miss = 3882 
core3_committed_inst = 11158 total_dcache_access = 3642 total_dcache_access = 14484 

 total_dcache_miss_rate = 0.0618 total_dcache_miss_rate = 0.2680 

   

  core0_committed_inst = 11158 

  core0_cpi = 7.17 

  core1_committed_inst = 11168 

  core1_cpi = 7.17 

  core2_committed_inst = 11084 

  core2_cpi = 7.22 

  core3_committed_inst = 11079 

  core3_cpi = 7.22 

   

  icache0_miss = 16 

  icache0_access = 12780 

  icache0_miss_rate = 0.0013 

  icache1_miss = 15 



  icache1_access = 12793 

  icache1_miss_rate = 0.0012 

  icache2_miss = 15 

  icache2_access = 12707 

  icache2_miss_rate = 0.0012 

  icache3_miss = 15 

  icache3_access = 12702 

  icache3_miss_rate = 0.0012 

   

  dcache_bank0_miss = 1001 

  dcache_bank0_access = 3749 

  
dcache_bank0_miss_rate = 
0.2670 

  dcache_bank1_miss = 898 

  dcache_bank1_access = 3429 

  
dcache_bank1_miss_rate = 
0.2619 

  dcache_bank2_miss = 1017 

  dcache_bank2_access = 3701 

  
dcache_bank2_miss_rate = 
0.2748 

  dcache_bank3_miss = 966 

  dcache_bank3_access = 3605 

  
dcache_bank3_miss_rate = 
0.2680 

 
Table 2: Mtbmark Sort 
 

Mtbmark-sort  
ISA Mcore 
In stats_en region: In stats_en region: 

total_committed_inst = 26280  

 num_cycles = 38153 
core0_committed_inst = 6310 total_committed_inst = 27790 
core1_committed_inst = 6596 total_cpi = 1.37 

core2_committed_inst = 6674  
core3_committed_inst = 6700 total_icache_miss = 931 

 total_icache_access = 30831 

 total_icache_miss_rate = 0.0302 

  

 total_dcache_miss = 570 



 total_dcache_access = 5560 

 total_dcache_miss_rate = 0.1025 

  

 core0_committed_inst = 6282 

 core0_cpi = 6.07 

 core1_committed_inst = 7074 

 core1_cpi = 5.39 

 core2_committed_inst = 7217 

 core2_cpi = 5.29 

 core3_committed_inst = 7217 

 core3_cpi = 5.29 

  

 icache0_miss = 287 

 icache0_access = 7207 

 icache0_miss_rate = 0.0398 

 icache1_miss = 213 

 icache1_access = 7794 

 icache1_miss_rate = 0.0273 

 icache2_miss = 197 

 icache2_access = 7932 

 icache2_miss_rate = 0.0248 

 icache3_miss = 234 

 icache3_access = 7898 

 icache3_miss_rate = 0.0296 

  

 dcache_bank0_miss = 144 

 dcache_bank0_access = 1882 

 
dcache_bank0_miss_rate = 
0.0765 

 dcache_bank1_miss = 160 

 dcache_bank1_access = 1097 

 
dcache_bank1_miss_rate = 
0.1459 

 dcache_bank2_miss = 115 

 dcache_bank2_access = 1105 

 
dcache_bank2_miss_rate = 
0.1041 

 dcache_bank3_miss = 151 

 dcache_bank3_access = 1476 



 
dcache_bank3_miss_rate = 
0.1023 

 
Table 3: Ubmark VVAdd 
 

Ubmark-vvadd   
ISA Score Mcore 
score In stats_en region: In stats_en region: 

In stats_en region:   
total_committed_inst = 811 num_cycles = 4311 num_cycles = 5934 

 total_committed_inst = 811 total_committed_inst = 3272 
mcore total_cpi = 5.32 total_cpi = 1.81 

In stats_en region:   
total_committed_inst = 3244 total_icache_miss = 5 total_icache_miss = 20 

 total_icache_access = 912 total_icache_access = 3687 
core0_committed_inst = 811 total_icache_miss_rate = 0.0055 total_icache_miss_rate = 0.0054 

core1_committed_inst = 811   
core2_committed_inst = 811 total_dcache_miss = 76 total_dcache_miss = 236 
core3_committed_inst = 811 total_dcache_access = 300 total_dcache_access = 1196 

 total_dcache_miss_rate = 0.2533 total_dcache_miss_rate = 0.1973 

   

  core0_committed_inst = 811 

  core0_cpi = 7.32 

  core1_committed_inst = 828 

  core1_cpi = 7.17 

  core2_committed_inst = 820 

  core2_cpi = 7.24 

  core3_committed_inst = 813 

  core3_cpi = 7.30 

   

  icache0_miss = 5 

  icache0_access = 912 

  icache0_miss_rate = 0.0055 

  icache1_miss = 5 

  icache1_access = 931 

  icache1_miss_rate = 0.0054 

  icache2_miss = 5 

  icache2_access = 926 

  icache2_miss_rate = 0.0054 

  icache3_miss = 5 



  icache3_access = 918 

  icache3_miss_rate = 0.0054 

   

  dcache_bank0_miss = 60 

  dcache_bank0_access = 303 

  
dcache_bank0_miss_rate = 
0.1980 

  dcache_bank1_miss = 55 

  dcache_bank1_access = 287 

  
dcache_bank1_miss_rate = 
0.1916 

  dcache_bank2_miss = 57 

  dcache_bank2_access = 301 

  
dcache_bank2_miss_rate = 
0.1894 

  dcache_bank3_miss = 64 

  dcache_bank3_access = 305 

  
dcache_bank3_miss_rate = 
0.2098 

 
Table 4: Mtbmark VVAdd 
 

Mtbmark-vvadd  
ISA Mcore 
In stats_en region: In stats_en region: 

total_committed_inst = 1400  

 num_cycles = 2260 
core0_committed_inst = 341 total_committed_inst = 1492 
core1_committed_inst = 353 total_cpi = 1.51 

core2_committed_inst = 353  
core3_committed_inst = 353 total_icache_miss = 55 

 total_icache_access = 1646 

 total_icache_miss_rate = 0.0334 

  

 total_dcache_miss = 89 

 total_dcache_access = 408 

 total_dcache_miss_rate = 0.2181 

  

 core0_committed_inst = 341 

 core0_cpi = 6.63 

 core1_committed_inst = 385 



 core1_cpi = 5.87 

 core2_committed_inst = 385 

 core2_cpi = 5.87 

 core3_committed_inst = 381 

 core3_cpi = 5.93 

  

 icache0_miss = 26 

 icache0_access = 379 

 icache0_miss_rate = 0.0686 

 icache1_miss = 9 

 icache1_access = 424 

 icache1_miss_rate = 0.0212 

 icache2_miss = 10 

 icache2_access = 424 

 icache2_miss_rate = 0.0236 

 icache3_miss = 10 

 icache3_access = 419 

 icache3_miss_rate = 0.0239 

  

 dcache_bank0_miss = 23 

 dcache_bank0_access = 125 

 
dcache_bank0_miss_rate = 
0.1840 

 dcache_bank1_miss = 22 

 dcache_bank1_access = 96 

 
dcache_bank1_miss_rate = 
0.2292 

 dcache_bank2_miss = 21 

 dcache_bank2_access = 85 

 
dcache_bank2_miss_rate = 
0.2471 

 dcache_bank3_miss = 23 

 dcache_bank3_access = 102 

 
dcache_bank3_miss_rate = 
0.2255 

 
Table 5: Ubmark Bsearch 
 

Ubmark-bsearch   
ISA Score Mcore 
score In stats_en region: In stats_en region: 



In stats_en region:   
total_committed_inst = 2106 num_cycles = 10341 num_cycles = 11721 

 total_committed_inst = 2106 total_committed_inst = 8430 
mcore total_cpi = 4.91 total_cpi = 1.39 

In stats_en region:   
total_committed_inst = 8424 total_icache_miss = 15 total_icache_miss = 57 

 total_icache_access = 2393 total_icache_access = 9574 
core0_committed_inst = 2106 total_icache_miss_rate = 0.0063 total_icache_miss_rate = 0.0060 

core1_committed_inst = 2106   
core2_committed_inst = 2106 total_dcache_miss = 149 total_dcache_miss = 262 
core3_committed_inst = 2106 total_dcache_access = 239 total_dcache_access = 958 

 total_dcache_miss_rate = 0.6234 total_dcache_miss_rate = 0.2735 

   

  core0_committed_inst = 2106 

  core0_cpi = 5.57 

  core1_committed_inst = 2108 

  core1_cpi = 5.56 

  core2_committed_inst = 2108 

  core2_cpi = 5.56 

  core3_committed_inst = 2108 

  core3_cpi = 5.56 

   

  icache0_miss = 15 

  icache0_access = 2393 

  icache0_miss_rate = 0.0063 

  icache1_miss = 14 

  icache1_access = 2394 

  icache1_miss_rate = 0.0058 

  icache2_miss = 14 

  icache2_access = 2393 

  icache2_miss_rate = 0.0059 

  icache3_miss = 14 

  icache3_access = 2394 

  icache3_miss_rate = 0.0058 

   

  dcache_bank0_miss = 87 

  dcache_bank0_access = 286 

  
dcache_bank0_miss_rate = 
0.3042 



  dcache_bank1_miss = 58 

  dcache_bank1_access = 252 

  
dcache_bank1_miss_rate = 
0.2302 

  dcache_bank2_miss = 60 

  dcache_bank2_access = 252 

  
dcache_bank2_miss_rate = 
0.2381 

  dcache_bank3_miss = 57 

  dcache_bank3_access = 168 

  
dcache_bank3_miss_rate = 
0.3393 

 
Table 6: Mtbmark Bsearch 
 

Mtbmark-bsearch  
ISA Mcore 
In stats_en region: In stats_en region: 

total_committed_inst = 2827  

 num_cycles = 3831 
core0_committed_inst = 687 total_committed_inst = 2855 
core1_committed_inst = 714 total_cpi = 1.34 

core2_committed_inst = 713  
core3_committed_inst = 713 total_icache_miss = 94 

 total_icache_access = 3216 

 total_icache_miss_rate = 0.0292 

  

 total_dcache_miss = 125 

 total_dcache_access = 371 

 total_dcache_miss_rate = 0.3369 

  

 core0_committed_inst = 673 

 core0_cpi = 5.69 

 core1_committed_inst = 722 

 core1_cpi = 5.31 

 core2_committed_inst = 730 

 core2_cpi = 5.25 

 core3_committed_inst = 730 

 core3_cpi = 5.25 

  

 icache0_miss = 36 



 icache0_access = 765 

 icache0_miss_rate = 0.0471 

 icache1_miss = 19 

 icache1_access = 811 

 icache1_miss_rate = 0.0234 

 icache2_miss = 20 

 icache2_access = 818 

 icache2_miss_rate = 0.0244 

 icache3_miss = 19 

 icache3_access = 822 

 icache3_miss_rate = 0.0231 

  

 dcache_bank0_miss = 34 

 dcache_bank0_access = 134 

 
dcache_bank0_miss_rate = 
0.2537 

 dcache_bank1_miss = 36 

 dcache_bank1_access = 85 

 
dcache_bank1_miss_rate = 
0.4235 

 dcache_bank2_miss = 33 

 dcache_bank2_access = 81 

 
dcache_bank2_miss_rate = 
0.4074 

 dcache_bank3_miss = 22 

 dcache_bank3_access = 71 

 
dcache_bank3_miss_rate = 
0.3099 

 
Table 7: Ubmark Cmult 
 

Ubmark-cmult   
ISA Score Mcore 
score In stats_en region: In stats_en region: 

In stats_en region:   
total_committed_inst = 2011 num_cycles = 12223 num_cycles = 23616 

 total_committed_inst = 2011 total_committed_inst = 8050 
mcore total_cpi = 6.08 total_cpi = 2.93 

In stats_en region:   
total_committed_inst = 8044 total_icache_miss = 7 total_icache_miss = 31 

 total_icache_access = 2112 total_icache_access = 8452 



core0_committed_inst = 2011 total_icache_miss_rate = 0.0033 total_icache_miss_rate = 0.0037 

core1_committed_inst = 2011   
core2_committed_inst = 2011 total_dcache_miss = 151 total_dcache_miss = 900 
core3_committed_inst = 2011 total_dcache_access = 1000 total_dcache_access = 4001 

 total_dcache_miss_rate = 0.1510 total_dcache_miss_rate = 0.2249 

   

  core0_committed_inst = 2011 

  core0_cpi = 11.74 

  core1_committed_inst = 2011 

  core1_cpi = 11.74 

  core2_committed_inst = 2012 

  core2_cpi = 11.74 

  core3_committed_inst = 2016 

  core3_cpi = 11.71 

   

  icache0_miss = 7 

  icache0_access = 2112 

  icache0_miss_rate = 0.0033 

  icache1_miss = 8 

  icache1_access = 2111 

  icache1_miss_rate = 0.0038 

  icache2_miss = 8 

  icache2_access = 2112 

  icache2_miss_rate = 0.0038 

  icache3_miss = 8 

  icache3_access = 2117 

  icache3_miss_rate = 0.0038 

   

  dcache_bank0_miss = 229 

  dcache_bank0_access = 1005 

  
dcache_bank0_miss_rate = 
0.2279 

  dcache_bank1_miss = 217 

  dcache_bank1_access = 992 

  
dcache_bank1_miss_rate = 
0.2188 

  dcache_bank2_miss = 221 

  dcache_bank2_access = 996 

  
dcache_bank2_miss_rate = 
0.2219 



  dcache_bank3_miss = 233 

  dcache_bank3_access = 1008 

  
dcache_bank3_miss_rate = 
0.2312 

 
Table 8: Mtbmark Cmult 
 

Mtbmark-cmult  
ISA Mcore 
In stats_en region: In stats_en region: 

total_committed_inst = 2600  

 num_cycles = 4915 
core0_committed_inst = 641 total_committed_inst = 2711 
core1_committed_inst = 653 total_cpi = 1.81 

core2_committed_inst = 653  
core3_committed_inst = 653 total_icache_miss = 64 

 total_icache_access = 2870 

 total_icache_miss_rate = 0.0223 

  

 total_dcache_miss = 173 

 total_dcache_access = 1110 

 total_dcache_miss_rate = 0.1559 

  

 core0_committed_inst = 641 

 core0_cpi = 7.67 

 core1_committed_inst = 693 

 core1_cpi = 7.09 

 core2_committed_inst = 697 

 core2_cpi = 7.05 

 core3_committed_inst = 680 

 core3_cpi = 7.23 

  

 icache0_miss = 30 

 icache0_access = 679 

 icache0_miss_rate = 0.0442 

 icache1_miss = 11 

 icache1_access = 735 

 icache1_miss_rate = 0.0150 

 icache2_miss = 11 

 icache2_access = 737 



 icache2_miss_rate = 0.0149 

 icache3_miss = 12 

 icache3_access = 719 

 icache3_miss_rate = 0.0167 

  

 dcache_bank0_miss = 43 

 dcache_bank0_access = 277 

 
dcache_bank0_miss_rate = 
0.1552 

 dcache_bank1_miss = 43 

 dcache_bank1_access = 304 

 
dcache_bank1_miss_rate = 
0.1414 

 dcache_bank2_miss = 44 

 dcache_bank2_access = 266 

 
dcache_bank2_miss_rate = 
0.1654 

 dcache_bank3_miss = 43 

 dcache_bank3_access = 263 

 
dcache_bank3_miss_rate = 
0.1635 

 
Table 9: Ubmark Mfilt 
 

Ubmark-mfilt   
ISA Score Mcore 
score In stats_en region: In stats_en region: 

In stats_en region:   
total_committed_inst = 5493 num_cycles = 25989 num_cycles = 32518 

 total_committed_inst = 5493 total_committed_inst = 22065 
mcore total_cpi = 4.73 total_cpi = 1.47 

In stats_en region:   
total_committed_inst = 21972 total_icache_miss = 23 total_icache_miss = 87 

 total_icache_access = 5836 total_icache_access = 23457 
core0_committed_inst = 5493 total_icache_miss_rate = 0.0039 total_icache_miss_rate = 0.0037 

core1_committed_inst = 5493   
core2_committed_inst = 5493 total_dcache_miss = 322 total_dcache_miss = 1262 
core3_committed_inst = 5493 total_dcache_access = 1312 total_dcache_access = 5269 

 total_dcache_miss_rate = 0.2454 total_dcache_miss_rate = 0.2395 

   

  core0_committed_inst = 5493 

  core0_cpi = 5.92 



  core1_committed_inst = 5506 

  core1_cpi = 5.91 

  core2_committed_inst = 5534 

  core2_cpi = 5.88 

  core3_committed_inst = 5532 

  core3_cpi = 5.88 

   

  icache0_miss = 23 

  icache0_access = 5836 

  icache0_miss_rate = 0.0039 

  icache1_miss = 22 

  icache1_access = 5851 

  icache1_miss_rate = 0.0038 

  icache2_miss = 21 

  icache2_access = 5886 

  icache2_miss_rate = 0.0036 

  icache3_miss = 21 

  icache3_access = 5884 

  icache3_miss_rate = 0.0036 

   

  dcache_bank0_miss = 321 

  dcache_bank0_access = 1333 

  
dcache_bank0_miss_rate = 
0.2408 

  dcache_bank1_miss = 324 

  dcache_bank1_access = 1341 

  
dcache_bank1_miss_rate = 
0.2416 

  dcache_bank2_miss = 307 

  dcache_bank2_access = 1296 

  
dcache_bank2_miss_rate = 
0.2369 

  dcache_bank3_miss = 310 

  dcache_bank3_access = 1299 

  
dcache_bank3_miss_rate = 
0.2386 

 
Table 10: Mtbmark Mfilt 
 

Mtbmark-mfilt  
ISA Mcore 



In stats_en region: In stats_en region: 

total_committed_inst = 6866  

 num_cycles = 9856 
core0_committed_inst = 1681 total_committed_inst = 7006 
core1_committed_inst = 1715 total_cpi = 1.41 

core2_committed_inst = 1759  
core3_committed_inst = 1711 total_icache_miss = 132 

 total_icache_access = 7491 

 total_icache_miss_rate = 0.0176 

  

 total_dcache_miss = 368 

 total_dcache_access = 1557 

 total_dcache_miss_rate = 0.2364 

  

 core0_committed_inst = 1673 

 core0_cpi = 5.89 

 core1_committed_inst = 1771 

 core1_cpi = 5.57 

 core2_committed_inst = 1821 

 core2_cpi = 5.41 

 core3_committed_inst = 1741 

 core3_cpi = 5.66 

  

 icache0_miss = 48 

 icache0_access = 1788 

 icache0_miss_rate = 0.0268 

 icache1_miss = 29 

 icache1_access = 1875 

 icache1_miss_rate = 0.0155 

 icache2_miss = 29 

 icache2_access = 1958 

 icache2_miss_rate = 0.0148 

 icache3_miss = 26 

 icache3_access = 1870 

 icache3_miss_rate = 0.0139 

  

 dcache_bank0_miss = 77 

 dcache_bank0_access = 373 



 
dcache_bank0_miss_rate = 
0.2064 

 dcache_bank1_miss = 104 

 dcache_bank1_access = 487 

 
dcache_bank1_miss_rate = 
0.2136 

 dcache_bank2_miss = 99 

 dcache_bank2_access = 362 

 
dcache_bank2_miss_rate = 
0.2735 

 dcache_bank3_miss = 88 

 dcache_bank3_access = 335 

 
dcache_bank3_miss_rate = 
0.2627 

 
Table 11. Member Roles 

 
Table 12. Role and Task Table 

 sh997 byx2 yo82 

Tasks Baseline Design:  
-Helped write Quicksort 
algorithm 
Alternative Design: 
-Helped debug Mergesort 
algorithm, made 
connections and debugged 
multi-core hardware 
Testing: 
Wrote some of the arrays we 
tested quicksort & 
mergesort on 
Report: 
Alternative, evaluation 
 

Baseline Design: 
- 
Alternative Design: 
-Helped write parallel 
sorting algorithm 
-Verifying connections to 
networks and memory 
Testing: 
-​Wrote software tests for 
parallel sorting algorithm 
 
Report: 
-​Testing, baseline design, 
evaluation 
 
 

Baseline Design: 
-Helped write Quicksort 
algorithm 
Alternative Design: 
-Helped write Mergesort 
algorithm, connections for 
multi-core 
Testing:  
-Ensured passing of tests of 
designs 
Report: 
-Introduction, baseline 
design, alternative design, 
testing 

 


