
ECE 4750 - Lab 4 Report
Sabrina Herman (sh997), Yoon Jae Oh (yo82), Benjamin Xing (byx2)

Section 1: Introduction
The purpose of this lab was to gain experience with topics taught in class such as software/hardware co-design, programming

single- and multi-threaded C programs, and computer architecture evaluation methodologies based on architecture-level statistics
through designing single and multicore processors. The lab incorporates many important themes in computer architecture like memory
networks and incremental design. Unique features of this lab included its emphasis on structural composition to incrementally create a
relatively complex system based on thoroughly unit-tested subsystems, software/hardware co-design such that students must
understand the software application, hardware/software interface, and hardware microarchitecture. These computer architecture
themes are relevant not only to this class, but to how computer architecture, design, and verification are implemented in industry.

In the baseline design, we were given a single-core processor with its own instruction and data cache. In the alternative
design, we designed a multi-core processor with private instruction caches and a shared, banked data cache. We also wrote both a
single-threaded and multithreaded sorting microbenchmark in C, explored the compiled and assembled binary, and ran these programs
on the two designs. The evaluation of the two designs (discussed more thoroughly in section 5) revealed that the alternative design
saves significantly on CPI (cycles per instruction) for the multi-threaded programs. For each of the evaluation tests, the alternative had
a smaller CPI than the baseline, for example the multicore had a CPI of 1.51 for the multi-threaded vvadd test whereas the single core
had a CPI of 5.32 for the same test. This result is mirrored by all the other multi-threaded evaluations that were conducted,
demonstrating how the alternative design can exploit thread-level parallelism to increase throughput and lower the CPI.

The alternative design is more compelling than the baseline design due to its ability to handle more than one thread
simultaneously. Multiple cores means that each core can handle a separate stream of data, which leads to significant performance
increases for a system running multiple concurrent applications. Multicore processors exploit thread-level parallelism by allocating
different threads within a single program to the different cores within the chip. This ideally will fully parallelize an application on P
processors and will result in about P× speedup. However, multicore designs also have their drawbacks. First of all, it is not possible to
fully parallelize most applications, and serial portions of the code can quickly dominate the execution time. Implementing multiple
cores also leads to increases in hardware area and energy requirements. However, the performance increases that they provide make
them well-worth the tradeoff, as previously discussed with the CPI. With regards to energy use, although the multicore processor
requires more energy overall due to its running of multiple threads and additional hardware, it could be argued that it actually saves
energy because it allocates less energy for an individual, single thread in the end than a single-core processor does for that same
thread.

 In general, increasing the number of cores will significantly increase performance in systems running multiple concurrent
threads. However, this is not always the case and is often unnecessary. For the most part, a dual or quad-core processor should be
enough to support a user’s needs for a basic computer. This is due to software limitations. With increases in cores, software
adaptations are necessary to support the addition of more cores. Therefore, specialized software is usually needed for very high-core
processors which is why high-core processors are usually machines that perform very complex tasks.

 ​Section 2: Baseline Design

The baseline design, shown in Figure 1, is a single core, pipelined processor with full bypassing composed with an
instruction cache and an unbanked data cache. The design does not use any networks because there are only a few modules to connect
together, and all memory data must flow through a single processor. It is also relatively simple to handle the val/rdy interfaces
between the instruction cache and processor and data cache and processor. The baseline design uses the alternative design from lab 2
in order to reduce stalls through bypassing. Bypassing significantly increases the throughput of the processor while requiring only a
small increase in hardware area and power requirements. It also uses the alternative design from lab 3 for the instruction and data
caches, which has two-way set-associativity to better exploit temporal locality. The number of banks is set to 0 because the cache does
not have to decide which core to send data to - there is only one core in the baseline. The cache miss/access statistics ports and
processor statistics ports are connected to outputs of the lab 5 module, and the performance statistics are dumped during the program
execution. This design is a good baseline design because all the instructions must execute on only a single core, meaning that it will be
very easy to compare and quantify the performance improvements of parallelization after the addition of more cores.

We implemented a scalar quicksort algorithm for sorting an array of integers. Quicksort chooses any element in the array to
serve as the pivot, and then partitions the remaining elements of the array on either side of the pivot based on whether they are smaller
or larger than the pivot value (smaller on left, larger on right). It then recursively executes quicksort on the arrays to either side of the
pivot until all elements in the array have been sorted. While any element in the array can be the pivot, usually it is either the first
element, the last element, or the middle element. For simplicity, we choose the last element in the array as the pivot position every
time we call the quicksort function. We use the quicksort algorithm because it is very efficient on average with O(n log n)

performance, although in the worst case it can take O(n^2) comparisons. Moreover, it is space efficient as it can be sorted in-place.
Quicksort is a good baseline because it has good cache spatial locality compared to other sorting algorithms, namely merge sort which
divides the array to sort it. We reuse quicksort in our merge sort algorithm in alternative design to sort the array portions. Therefore,
quicksort makes a good baseline design because it can be reused in the merge sort, and we can more easily evaluate the benefits and
drawbacks that come from dividing the array among multiple cores.

This design (and the alternative as well) demonstrates hierarchy due to its memory structure. There exists a memory
hierarchy from the caches, main memory, and other memory levels that might exist. A hierarchy means there are different levels of
memory in which going up levels means increased speed and bandwidth and going down levels means increased capacity. The cache
is at a higher level than the main memory and it takes less time to access data within it while having a lower capacity then memory
levels below it. The main memory is at a lower level than the caches and it has the ability to hold much more data than a cache but it
takes much longer to access its data than the levels above it. The design also demonstrates modularity because the different parts of the
single core processor were put together using the different processor and cache modules. Modularity refers to a system composed of
separate components that can be connected together, which is exactly how this system was designed. Since we did not have to worry
about the implementation of the processor or caches (for this lab at least), the design is also an example of encapsulation, meaning the
modules are self-governing. We could easily swap our implementation out for a different implementation if so desired because only
the input and output connections must remain the same.

Section 3: Alternative Design

The alternative design is a quad-core processor with four instruction caches and a banked datacache system, shown in detail
in Figure 7 and at a higher level in Figure 2. Networks handle the interface between the caches and main memory. The multicore
datacache contains four data cache banks, a cachenet, and a memnet where the cachenet connects the caches and handles the banking
of the caches and the memnet connects the banked caches to the main memory. We were responsible for connecting this multicore
datacache, the instruction caches, the memnet which connects to the instruction caches, and the four processors.

For this alternative design, we chose to use our alternative processor design from lab 2 for the processors and also our
alternative cache design from lab 3 for the instruction caches. We chose to do this because the alternative design for the processor over
the baseline design because the baseline only has the capability of utilizing stalling to deal with data hazards whereas the alternative
has the ability to use bypassing on top of stalling. We also chose to use the alternative design for the instruction caches over the
baseline. This is because the baseline is a direct-mapped cache whereas the alternative is a two-way set-associative cache. Compared
to the direct-mapped cache, the set-associative cache results in a larger hit rate since for any given index there are two different ways
where the tag can be stored. A larger hit rate means that memory is accessed less, which saves on clock cycles.

The alternative design’s CacheNet, shown in Figure 3, handles the interface between the four processors and the four data
cache banks. This network has an Upstream (processor) and Downstream (main memory) message adapter which convert processor
and main memory messages respectively to network messages. The Upstream adapter extracts the bank bits, seen in Figure 4, from the
processor and includes them in the destination header. The MemNet, shown in Figure 5, works in more or less the same way as the
CacheNet, but the Upstream adapter always inserts a 0 into the destination field. The MemNet is used to refill the instruction caches
and data cache banks. Finally, the McoreDataCache module, seen in Figure 6, combines the CacheNet, MemNet, and four cache banks
to create the complete shared, 4-banked data cache system. We instantiate the McoreDataCache along with four processors, four
instruction caches, and an additional MemNet for the instruction caches in the MultiCore system, simulating a realistic processor and
cache system. This incremental development approach is a good example of modularity and hierarchy because the components are
grouped into self-governing modules which build upon each other to form the final MultiCore system at the top of the hierarchy
structure. The design also lends itself to the principle of extensibility since it would be easy to improve a subcomponent and simply
swap it into the existing design. For instance, if we were to change the network topology, we could simply develop new CacheNet or
MemNet modules and replace the current modules.

Additionally, we wrote a hybrid quicksort/mergesort (parallel sort) algorithm for sorting an array of integers. Our mergesort
essentially takes two sorted arrays and incrementally combines individual elements from the two arrays into a larger, sorted array. The
mergesort function took in an argument vector pointer. With this argument, we could determine the destination and source array
pointers as well as the “begin” and “end” indexes of the array needing to be sorted. The size of the array could be determined by
subtracting the “begin” index from the “end” index. Our mergesort algorithm breaks up the array into two, one starting at the “begin”
index and ending at the middle index and the other starting at the middle index and ending at the “end” index. The index of the middle
was calculated by taking half the size of the array and adding it to the begin index. The two sub-arrays have been sorted by the
quicksort algorithm. Our mergesort algorithm will then execute a for-loop the size of the final destination array and fill each element.
This is done by comparing the elements in the two sorted sub-arrays. At each iteration of the for-loop, the algorithm checks to see
which sub-array has the smallest number at the “head” index and that element is placed into the next index of the destination array.

The “head” index for a sub-array starts at its first element and is incremented each time an element from that subarray is put into the
final destination array. Mergesort is a good alternative because it utilizes a divide-and-conquer method and its worst complexity is
O(n*log(n)). In fact, it is most optimized for combining already-sorted arrays, which is why we use it in tandem with our scalar
quicksort algorithm.

A multi-core (4-core) processor is a good alternative design because it has the ability to run multiple threads simultaneously,
but we can begin to see the drawbacks of adding more cores. As discussed later in our evaluation, there are costs to adding more cores,
hence why we don’t use 100 cores. This comparison is similar to why we did not use 100 pipeline stages in our pipeline processor in
lab 2. Though more work can be done in parallel, it becomes harder to divide the work evenly and the overhead becomes higher as
well. There is also often no need for so much work to be done in parallel, as not many programs have such characteristics.

All in all, a multicore processor is an optimization over the single core processor in the baseline design because it provides a
larger bandwidth and an increased thread-level parallelism that increases processor performance significantly. Though there is more
complexity in the multithreaded mergesort than the single threaded quicksort, resulting in more instructions to be processed, the
parallelization of the multi-core processor optimizes the performance of sorting the array over the single-core single threaded sort.

Section 4: Testing

In order to test our baseline and alternative designs, we used directed and random testing. Directed testing was important so
that we could set up certain situations, predict the behavior, and observe the results in order to make sure that the functioning was
correct. Random testing was important because it could produce situations that we did not even think to try in order to test the
processor designs. For the random testing, we utilized both random value and random delay testing to cover all the aspects of the
processors. We go more into detail about these different testing strategies in the following paragraphs.

Directed testing was essential to ensuring that the processors would respond the way we expected them to respond. Tests for
the CacheNet, MemNet, and McoreDataCache are provided to us. These tests use the test sources to load messages into the network
and verify that the network properly processes these messages. For the CacheNet and McoreDataCache modules, tests from Lab 3 are
used since these modules accept cache requests. Instead of a single source and sink, however, there are now four source and sink pairs.
For the entire MultiCore composition, we are provided with an incremental testing strategy. First, the directed assembly sequences are
used to verify that arithmetic operations, multiplication operations, memory operations, jumps, branches, etc. are working properly.
These tests choose registers to load test values into, perform operations on them, and then check for correctness in the test sink. They
also allow us to force data dependencies to occur in order to test proper hazard management. These tests are finally combined into
more comprehensive unit test suites that combine several instruction types into a sequence that simulates more realistic computation.
At this point, random delay and random value testing are also performed, as explained in the next section.

Random delay tests were used in lab in order to ensure that the ready and valid signals between all the different modules were
working correctly. The ready and valid signals are essential in the functioning of these processors because they control what data
flows through the system and when that data flows through the system. If these signals are incorrect, the wrong data will be delivered
to the module waiting on a specific piece of data. These random delays specify arbitrary stalls into the system to make sure that data is
passed around as soon as it is available, it should wait until the valid/ready bits are high between the modules that it is passing
through. Random value testing was also implemented to ensure not only that the design is correct across general use cases but also to
simulate what the processor might see in a real computing scenario. For instance, random testing is often useful for covering edge
cases or other special cases we may not have thoroughly checked in our directed testing. Moreover, random testing sometimes exposes
errors in our microarchitectural implementation, such as when we forgot to ensure the reliability of our multiplier from lab 2. Random
value testing was implemented using Python’s built-in pseudorandom number generation functions for the operand values and
checking the output of the processor against the expected value that we determine as a function of the inputs.

Part of our incremental testing strategy was to thoroughly test the hardware and software portions of the lab separately before
combining them. We tested the correctness of our sorting algorithms by creating different arrays that test various edge cases. Since
there are four cores, it is important to test the behavior when the number of array elements is not a multiple of four. We simply created
arrays of size 127, 126, and 125 to test all the possible remainders when dividing the size by 4. These tests ensure that we handle the
array indexing correctly when dividing up the work among the four cores. We also added arrays with all elements of equal value, as
well as arrays with fewer than 4 elements in order to test corner cases. The non-multiples-of-four sorting tests were implemented to
allow us to confirm the correctness of our multi-core processor’s allocation of work for the different cores even when the work is not
able to be split up evenly by the four cores.

After all these tests, we can safely conclude that our design is functionally correct because we carefully tested each aspect of
the system with both random and controlled tests. The random value and delay tests ensure that our system functions correctly for
cases we might not have considered and the directed tests allowed us to confirm that the designs behave the way we expected.

Section 5: Evaluation
All of the multi-threaded benchmarks performed better on the multicore system than the corresponding single-threaded

benchmarks on the single-core system. However, they do not result in the theoretical 4X speedup over the single core; in most cases,
they resulted in a speedup of just over 3X (see CPI in Table 0). This fact results from a number of reasons. First, the code that runs on
the multicore system tends to require significantly more assembly instructions than the code for the single-core system due to the extra
overhead of dividing up arrays and spawning work for the worker cores. Second, the multicore system tends to have a greater number
of instruction cache misses than the single core, possibly due to a less efficient use of spatial locality. As a result, the four individual
cores have more than a fourth of the instructions of the single core and have a higher CPI than the single core (compare core0
instructions and CPI to single core in Table 0). However, when these cores are combined, the overall CPI becomes lower due to
executing the four cores in parallel. Also, the theoretical 4X speedup is not generally attainable because full parallelization is
impossible for most programs and serial portions of code can dominate execution time.

The single-threaded benchmarks perform very poorly on the multicore system due to the fact that there was no thread-level
parallelism to take advantage of. For example, the multicore system performed worse on the quicksort benchmark than the single core
system. This is because the work was not divided up between the cores, meaning the optimization that the multicore system provides
was not useful for the single-threaded benchmarks. Though our multicore system seems to have a high CPI, that is only because the
calculations are done on the basis that the work is divided among the four cores, not repeated on them. It might also be the case that
the multicore system must stall or squash more instructions than the single core due to the data hazard of having multiple cores
executing the same instructions. Not only is it unnecessary to execute an instruction four separate times, it is also detrimental to the
performance.

Sorting was chosen as an evaluation method because it is work that can be split up between the different cores and
re-combined to come to the final answer. The mergesort algorithm essentially breaks up the array into the smallest sub-arrays and
starts sorting from there, meaning these sub-arrays can be sorted by the different cores and then re-combined by one of them to
produce the final sorted array. This allows us to easily evaluate the difference between running a sorting algorithm on a single core as
opposed to multiple cores and compare the results, which is why we used sorting as an evaluation method.

The different benchmarks provided, which all have improved performance in the multithreaded versions, demonstrate that
breaking up the single thread into multiple threads on multiple cores will have generally similar effects. The benchmarks perform
operations on arrays, which have high spatial locality. The spatial locality of the benchmarks takes advantage of our banked cache
system such that the different processor cores all have access to the same data. This fact, along with the benchmarks’ ability to be
divided among multiple cores, make them good benchmarks for evaluation. The benchmarks did have some small differences. For
example, bsearch did not require as many extra instructions to be divided up among the cores, but that is due to the nature of this being
a search algorithm which lends itself well to multithreading. Bsearch also had a higher datacache hit rate as compared to the single
core version. The sort benchmark on the other hand, required much more extra instructions than the single core to run. This is because
the sorting benchmark requires more communication between the cores. However, the result is still similar in that the multicore did
much better in terms of CPI than the single core.

The multicore system has a significant increase in area and energy requirements due to the quadrupling of processors and
caches in addition to the added networks. The overall reduction in computational time offsets this increase somewhat, but not
completely. The multicore system is ideal if performance is the main concern and energy and area requirements are secondary, such as
in desktop computers and industrial applications. On the other hand, in certain systems like embedded devices and mobile devices
where energy and size are critical requirements, it may not be worth it to use a multicore system.

All in all, we can conclude that the multi-core processor significantly increases the performance of programs with a
multi-threaded nature whereas it provides little to no optimization for single-threaded programs. This is obvious because a multi-core
processor allocates different threads into the different cores so that they can be executed simultaneously and increase the throughput of
the program. Additionally, an important conclusion is that performance does not scale linearly with number of cores, as demonstrated
by the less than 4X speedup. In realistic systems, various overheads that come with increasing thread-level parallelism result in
diminishing returns as the number of cores increases, which explains why modern systems do not use hundreds or thousands of cores.
Besides the obvious energy and area increases that this would entail, realistic multicore systems must manage coherence, consistency,
and synchronization. The marginal performance benefits are not worth the astronomical costs of blindly adding more cores.

Section 6: Additional Diagrams

Table 0: Comparison of single-threaded code on single-core processor to multi-threaded code on multi-core processor

 Sort VVadd Bsearch Cmult Mfilt

Metric Score Mcore Score Mcore Score Mcore Score Mcore Score Mcore
num cycles 56019 38153 4311 2260 10341 3831 12223 4915 25989 9856
total cpi 5.02 1.37 5.32 1.51 4.91 1.34 6.08 1.81 4.73 1.41
total instructions 11158 27790 811 1492 2106 2855 2011 2711 5493 7006
total icache miss rate 0.0013 0.0302 0.0055 0.0334 0.0063 0.0292 0.0033 0.0223 0.0039 0.0176
total dcache miss rate 0.0618 0.1025 0.2533 0.2181 0.6234 0.3369 0.151 0.1559 0.2454 0.2364

core0 commit inst 6282 341 673 641 1673

cor0 cpi 6.07 6.63 5.69 7.67 5.89

Table 1: Ubmark Quicksort

Ubmark-quicksort
ISA Score Mcore
score In stats_en region: In stats_en region:

In stats_en region:
total_committed_inst = 11158 num_cycles = 56019 num_cycles = 80025

 total_committed_inst = 11158 total_committed_inst = 44489
mcore total_cpi = 5.02 total_cpi = 1.80

In stats_en region:
total_committed_inst = 44632 total_icache_miss = 16 total_icache_miss = 61

 total_icache_access = 12780 total_icache_access = 50982
core0_committed_inst = 11158 total_icache_miss_rate = 0.0013 total_icache_miss_rate = 0.0012

core1_committed_inst = 11158
core2_committed_inst = 11158 total_dcache_miss = 225 total_dcache_miss = 3882
core3_committed_inst = 11158 total_dcache_access = 3642 total_dcache_access = 14484

 total_dcache_miss_rate = 0.0618 total_dcache_miss_rate = 0.2680

 core0_committed_inst = 11158

 core0_cpi = 7.17

 core1_committed_inst = 11168

 core1_cpi = 7.17

 core2_committed_inst = 11084

 core2_cpi = 7.22

 core3_committed_inst = 11079

 core3_cpi = 7.22

 icache0_miss = 16

 icache0_access = 12780

 icache0_miss_rate = 0.0013

 icache1_miss = 15

 icache1_access = 12793

 icache1_miss_rate = 0.0012

 icache2_miss = 15

 icache2_access = 12707

 icache2_miss_rate = 0.0012

 icache3_miss = 15

 icache3_access = 12702

 icache3_miss_rate = 0.0012

 dcache_bank0_miss = 1001

 dcache_bank0_access = 3749

dcache_bank0_miss_rate =
0.2670

 dcache_bank1_miss = 898

 dcache_bank1_access = 3429

dcache_bank1_miss_rate =
0.2619

 dcache_bank2_miss = 1017

 dcache_bank2_access = 3701

dcache_bank2_miss_rate =
0.2748

 dcache_bank3_miss = 966

 dcache_bank3_access = 3605

dcache_bank3_miss_rate =
0.2680

Table 2: Mtbmark Sort

Mtbmark-sort
ISA Mcore
In stats_en region: In stats_en region:

total_committed_inst = 26280

 num_cycles = 38153
core0_committed_inst = 6310 total_committed_inst = 27790
core1_committed_inst = 6596 total_cpi = 1.37

core2_committed_inst = 6674
core3_committed_inst = 6700 total_icache_miss = 931

 total_icache_access = 30831

 total_icache_miss_rate = 0.0302

 total_dcache_miss = 570

 total_dcache_access = 5560

 total_dcache_miss_rate = 0.1025

 core0_committed_inst = 6282

 core0_cpi = 6.07

 core1_committed_inst = 7074

 core1_cpi = 5.39

 core2_committed_inst = 7217

 core2_cpi = 5.29

 core3_committed_inst = 7217

 core3_cpi = 5.29

 icache0_miss = 287

 icache0_access = 7207

 icache0_miss_rate = 0.0398

 icache1_miss = 213

 icache1_access = 7794

 icache1_miss_rate = 0.0273

 icache2_miss = 197

 icache2_access = 7932

 icache2_miss_rate = 0.0248

 icache3_miss = 234

 icache3_access = 7898

 icache3_miss_rate = 0.0296

 dcache_bank0_miss = 144

 dcache_bank0_access = 1882

dcache_bank0_miss_rate =
0.0765

 dcache_bank1_miss = 160

 dcache_bank1_access = 1097

dcache_bank1_miss_rate =
0.1459

 dcache_bank2_miss = 115

 dcache_bank2_access = 1105

dcache_bank2_miss_rate =
0.1041

 dcache_bank3_miss = 151

 dcache_bank3_access = 1476

dcache_bank3_miss_rate =
0.1023

Table 3: Ubmark VVAdd

Ubmark-vvadd
ISA Score Mcore
score In stats_en region: In stats_en region:

In stats_en region:
total_committed_inst = 811 num_cycles = 4311 num_cycles = 5934

 total_committed_inst = 811 total_committed_inst = 3272
mcore total_cpi = 5.32 total_cpi = 1.81

In stats_en region:
total_committed_inst = 3244 total_icache_miss = 5 total_icache_miss = 20

 total_icache_access = 912 total_icache_access = 3687
core0_committed_inst = 811 total_icache_miss_rate = 0.0055 total_icache_miss_rate = 0.0054

core1_committed_inst = 811
core2_committed_inst = 811 total_dcache_miss = 76 total_dcache_miss = 236
core3_committed_inst = 811 total_dcache_access = 300 total_dcache_access = 1196

 total_dcache_miss_rate = 0.2533 total_dcache_miss_rate = 0.1973

 core0_committed_inst = 811

 core0_cpi = 7.32

 core1_committed_inst = 828

 core1_cpi = 7.17

 core2_committed_inst = 820

 core2_cpi = 7.24

 core3_committed_inst = 813

 core3_cpi = 7.30

 icache0_miss = 5

 icache0_access = 912

 icache0_miss_rate = 0.0055

 icache1_miss = 5

 icache1_access = 931

 icache1_miss_rate = 0.0054

 icache2_miss = 5

 icache2_access = 926

 icache2_miss_rate = 0.0054

 icache3_miss = 5

 icache3_access = 918

 icache3_miss_rate = 0.0054

 dcache_bank0_miss = 60

 dcache_bank0_access = 303

dcache_bank0_miss_rate =
0.1980

 dcache_bank1_miss = 55

 dcache_bank1_access = 287

dcache_bank1_miss_rate =
0.1916

 dcache_bank2_miss = 57

 dcache_bank2_access = 301

dcache_bank2_miss_rate =
0.1894

 dcache_bank3_miss = 64

 dcache_bank3_access = 305

dcache_bank3_miss_rate =
0.2098

Table 4: Mtbmark VVAdd

Mtbmark-vvadd
ISA Mcore
In stats_en region: In stats_en region:

total_committed_inst = 1400

 num_cycles = 2260
core0_committed_inst = 341 total_committed_inst = 1492
core1_committed_inst = 353 total_cpi = 1.51

core2_committed_inst = 353
core3_committed_inst = 353 total_icache_miss = 55

 total_icache_access = 1646

 total_icache_miss_rate = 0.0334

 total_dcache_miss = 89

 total_dcache_access = 408

 total_dcache_miss_rate = 0.2181

 core0_committed_inst = 341

 core0_cpi = 6.63

 core1_committed_inst = 385

 core1_cpi = 5.87

 core2_committed_inst = 385

 core2_cpi = 5.87

 core3_committed_inst = 381

 core3_cpi = 5.93

 icache0_miss = 26

 icache0_access = 379

 icache0_miss_rate = 0.0686

 icache1_miss = 9

 icache1_access = 424

 icache1_miss_rate = 0.0212

 icache2_miss = 10

 icache2_access = 424

 icache2_miss_rate = 0.0236

 icache3_miss = 10

 icache3_access = 419

 icache3_miss_rate = 0.0239

 dcache_bank0_miss = 23

 dcache_bank0_access = 125

dcache_bank0_miss_rate =
0.1840

 dcache_bank1_miss = 22

 dcache_bank1_access = 96

dcache_bank1_miss_rate =
0.2292

 dcache_bank2_miss = 21

 dcache_bank2_access = 85

dcache_bank2_miss_rate =
0.2471

 dcache_bank3_miss = 23

 dcache_bank3_access = 102

dcache_bank3_miss_rate =
0.2255

Table 5: Ubmark Bsearch

Ubmark-bsearch
ISA Score Mcore
score In stats_en region: In stats_en region:

In stats_en region:
total_committed_inst = 2106 num_cycles = 10341 num_cycles = 11721

 total_committed_inst = 2106 total_committed_inst = 8430
mcore total_cpi = 4.91 total_cpi = 1.39

In stats_en region:
total_committed_inst = 8424 total_icache_miss = 15 total_icache_miss = 57

 total_icache_access = 2393 total_icache_access = 9574
core0_committed_inst = 2106 total_icache_miss_rate = 0.0063 total_icache_miss_rate = 0.0060

core1_committed_inst = 2106
core2_committed_inst = 2106 total_dcache_miss = 149 total_dcache_miss = 262
core3_committed_inst = 2106 total_dcache_access = 239 total_dcache_access = 958

 total_dcache_miss_rate = 0.6234 total_dcache_miss_rate = 0.2735

 core0_committed_inst = 2106

 core0_cpi = 5.57

 core1_committed_inst = 2108

 core1_cpi = 5.56

 core2_committed_inst = 2108

 core2_cpi = 5.56

 core3_committed_inst = 2108

 core3_cpi = 5.56

 icache0_miss = 15

 icache0_access = 2393

 icache0_miss_rate = 0.0063

 icache1_miss = 14

 icache1_access = 2394

 icache1_miss_rate = 0.0058

 icache2_miss = 14

 icache2_access = 2393

 icache2_miss_rate = 0.0059

 icache3_miss = 14

 icache3_access = 2394

 icache3_miss_rate = 0.0058

 dcache_bank0_miss = 87

 dcache_bank0_access = 286

dcache_bank0_miss_rate =
0.3042

 dcache_bank1_miss = 58

 dcache_bank1_access = 252

dcache_bank1_miss_rate =
0.2302

 dcache_bank2_miss = 60

 dcache_bank2_access = 252

dcache_bank2_miss_rate =
0.2381

 dcache_bank3_miss = 57

 dcache_bank3_access = 168

dcache_bank3_miss_rate =
0.3393

Table 6: Mtbmark Bsearch

Mtbmark-bsearch
ISA Mcore
In stats_en region: In stats_en region:

total_committed_inst = 2827

 num_cycles = 3831
core0_committed_inst = 687 total_committed_inst = 2855
core1_committed_inst = 714 total_cpi = 1.34

core2_committed_inst = 713
core3_committed_inst = 713 total_icache_miss = 94

 total_icache_access = 3216

 total_icache_miss_rate = 0.0292

 total_dcache_miss = 125

 total_dcache_access = 371

 total_dcache_miss_rate = 0.3369

 core0_committed_inst = 673

 core0_cpi = 5.69

 core1_committed_inst = 722

 core1_cpi = 5.31

 core2_committed_inst = 730

 core2_cpi = 5.25

 core3_committed_inst = 730

 core3_cpi = 5.25

 icache0_miss = 36

 icache0_access = 765

 icache0_miss_rate = 0.0471

 icache1_miss = 19

 icache1_access = 811

 icache1_miss_rate = 0.0234

 icache2_miss = 20

 icache2_access = 818

 icache2_miss_rate = 0.0244

 icache3_miss = 19

 icache3_access = 822

 icache3_miss_rate = 0.0231

 dcache_bank0_miss = 34

 dcache_bank0_access = 134

dcache_bank0_miss_rate =
0.2537

 dcache_bank1_miss = 36

 dcache_bank1_access = 85

dcache_bank1_miss_rate =
0.4235

 dcache_bank2_miss = 33

 dcache_bank2_access = 81

dcache_bank2_miss_rate =
0.4074

 dcache_bank3_miss = 22

 dcache_bank3_access = 71

dcache_bank3_miss_rate =
0.3099

Table 7: Ubmark Cmult

Ubmark-cmult
ISA Score Mcore
score In stats_en region: In stats_en region:

In stats_en region:
total_committed_inst = 2011 num_cycles = 12223 num_cycles = 23616

 total_committed_inst = 2011 total_committed_inst = 8050
mcore total_cpi = 6.08 total_cpi = 2.93

In stats_en region:
total_committed_inst = 8044 total_icache_miss = 7 total_icache_miss = 31

 total_icache_access = 2112 total_icache_access = 8452

core0_committed_inst = 2011 total_icache_miss_rate = 0.0033 total_icache_miss_rate = 0.0037

core1_committed_inst = 2011
core2_committed_inst = 2011 total_dcache_miss = 151 total_dcache_miss = 900
core3_committed_inst = 2011 total_dcache_access = 1000 total_dcache_access = 4001

 total_dcache_miss_rate = 0.1510 total_dcache_miss_rate = 0.2249

 core0_committed_inst = 2011

 core0_cpi = 11.74

 core1_committed_inst = 2011

 core1_cpi = 11.74

 core2_committed_inst = 2012

 core2_cpi = 11.74

 core3_committed_inst = 2016

 core3_cpi = 11.71

 icache0_miss = 7

 icache0_access = 2112

 icache0_miss_rate = 0.0033

 icache1_miss = 8

 icache1_access = 2111

 icache1_miss_rate = 0.0038

 icache2_miss = 8

 icache2_access = 2112

 icache2_miss_rate = 0.0038

 icache3_miss = 8

 icache3_access = 2117

 icache3_miss_rate = 0.0038

 dcache_bank0_miss = 229

 dcache_bank0_access = 1005

dcache_bank0_miss_rate =
0.2279

 dcache_bank1_miss = 217

 dcache_bank1_access = 992

dcache_bank1_miss_rate =
0.2188

 dcache_bank2_miss = 221

 dcache_bank2_access = 996

dcache_bank2_miss_rate =
0.2219

 dcache_bank3_miss = 233

 dcache_bank3_access = 1008

dcache_bank3_miss_rate =
0.2312

Table 8: Mtbmark Cmult

Mtbmark-cmult
ISA Mcore
In stats_en region: In stats_en region:

total_committed_inst = 2600

 num_cycles = 4915
core0_committed_inst = 641 total_committed_inst = 2711
core1_committed_inst = 653 total_cpi = 1.81

core2_committed_inst = 653
core3_committed_inst = 653 total_icache_miss = 64

 total_icache_access = 2870

 total_icache_miss_rate = 0.0223

 total_dcache_miss = 173

 total_dcache_access = 1110

 total_dcache_miss_rate = 0.1559

 core0_committed_inst = 641

 core0_cpi = 7.67

 core1_committed_inst = 693

 core1_cpi = 7.09

 core2_committed_inst = 697

 core2_cpi = 7.05

 core3_committed_inst = 680

 core3_cpi = 7.23

 icache0_miss = 30

 icache0_access = 679

 icache0_miss_rate = 0.0442

 icache1_miss = 11

 icache1_access = 735

 icache1_miss_rate = 0.0150

 icache2_miss = 11

 icache2_access = 737

 icache2_miss_rate = 0.0149

 icache3_miss = 12

 icache3_access = 719

 icache3_miss_rate = 0.0167

 dcache_bank0_miss = 43

 dcache_bank0_access = 277

dcache_bank0_miss_rate =
0.1552

 dcache_bank1_miss = 43

 dcache_bank1_access = 304

dcache_bank1_miss_rate =
0.1414

 dcache_bank2_miss = 44

 dcache_bank2_access = 266

dcache_bank2_miss_rate =
0.1654

 dcache_bank3_miss = 43

 dcache_bank3_access = 263

dcache_bank3_miss_rate =
0.1635

Table 9: Ubmark Mfilt

Ubmark-mfilt
ISA Score Mcore
score In stats_en region: In stats_en region:

In stats_en region:
total_committed_inst = 5493 num_cycles = 25989 num_cycles = 32518

 total_committed_inst = 5493 total_committed_inst = 22065
mcore total_cpi = 4.73 total_cpi = 1.47

In stats_en region:
total_committed_inst = 21972 total_icache_miss = 23 total_icache_miss = 87

 total_icache_access = 5836 total_icache_access = 23457
core0_committed_inst = 5493 total_icache_miss_rate = 0.0039 total_icache_miss_rate = 0.0037

core1_committed_inst = 5493
core2_committed_inst = 5493 total_dcache_miss = 322 total_dcache_miss = 1262
core3_committed_inst = 5493 total_dcache_access = 1312 total_dcache_access = 5269

 total_dcache_miss_rate = 0.2454 total_dcache_miss_rate = 0.2395

 core0_committed_inst = 5493

 core0_cpi = 5.92

 core1_committed_inst = 5506

 core1_cpi = 5.91

 core2_committed_inst = 5534

 core2_cpi = 5.88

 core3_committed_inst = 5532

 core3_cpi = 5.88

 icache0_miss = 23

 icache0_access = 5836

 icache0_miss_rate = 0.0039

 icache1_miss = 22

 icache1_access = 5851

 icache1_miss_rate = 0.0038

 icache2_miss = 21

 icache2_access = 5886

 icache2_miss_rate = 0.0036

 icache3_miss = 21

 icache3_access = 5884

 icache3_miss_rate = 0.0036

 dcache_bank0_miss = 321

 dcache_bank0_access = 1333

dcache_bank0_miss_rate =
0.2408

 dcache_bank1_miss = 324

 dcache_bank1_access = 1341

dcache_bank1_miss_rate =
0.2416

 dcache_bank2_miss = 307

 dcache_bank2_access = 1296

dcache_bank2_miss_rate =
0.2369

 dcache_bank3_miss = 310

 dcache_bank3_access = 1299

dcache_bank3_miss_rate =
0.2386

Table 10: Mtbmark Mfilt

Mtbmark-mfilt
ISA Mcore

In stats_en region: In stats_en region:

total_committed_inst = 6866

 num_cycles = 9856
core0_committed_inst = 1681 total_committed_inst = 7006
core1_committed_inst = 1715 total_cpi = 1.41

core2_committed_inst = 1759
core3_committed_inst = 1711 total_icache_miss = 132

 total_icache_access = 7491

 total_icache_miss_rate = 0.0176

 total_dcache_miss = 368

 total_dcache_access = 1557

 total_dcache_miss_rate = 0.2364

 core0_committed_inst = 1673

 core0_cpi = 5.89

 core1_committed_inst = 1771

 core1_cpi = 5.57

 core2_committed_inst = 1821

 core2_cpi = 5.41

 core3_committed_inst = 1741

 core3_cpi = 5.66

 icache0_miss = 48

 icache0_access = 1788

 icache0_miss_rate = 0.0268

 icache1_miss = 29

 icache1_access = 1875

 icache1_miss_rate = 0.0155

 icache2_miss = 29

 icache2_access = 1958

 icache2_miss_rate = 0.0148

 icache3_miss = 26

 icache3_access = 1870

 icache3_miss_rate = 0.0139

 dcache_bank0_miss = 77

 dcache_bank0_access = 373

dcache_bank0_miss_rate =
0.2064

 dcache_bank1_miss = 104

 dcache_bank1_access = 487

dcache_bank1_miss_rate =
0.2136

 dcache_bank2_miss = 99

 dcache_bank2_access = 362

dcache_bank2_miss_rate =
0.2735

 dcache_bank3_miss = 88

 dcache_bank3_access = 335

dcache_bank3_miss_rate =
0.2627

Table 11. Member Roles

Table 12. Role and Task Table

 sh997 byx2 yo82

Tasks Baseline Design:
-Helped write Quicksort
algorithm
Alternative Design:
-Helped debug Mergesort
algorithm, made
connections and debugged
multi-core hardware
Testing:
Wrote some of the arrays we
tested quicksort &
mergesort on
Report:
Alternative, evaluation

Baseline Design:
-
Alternative Design:
-Helped write parallel
sorting algorithm
-Verifying connections to
networks and memory
Testing:
-​Wrote software tests for
parallel sorting algorithm

Report:
-​Testing, baseline design,
evaluation

Baseline Design:
-Helped write Quicksort
algorithm
Alternative Design:
-Helped write Mergesort
algorithm, connections for
multi-core
Testing:
-Ensured passing of tests of
designs
Report:
-Introduction, baseline
design, alternative design,
testing

